返回

沪科版(2022)九年级数学上册教案:21.6 综合与实践 获取最大利润

首页 > 初中 > 数学 > 沪科版(2022)九年级数学上册教案:21.6 综合与实践 获取最大利润

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

21.6综合与实践获取最大利润【知识与技能】能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.【过程与方法】经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.【情感态度】积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.【教学重点】探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.【教学难点】从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题.一、情景导入,初步认知问题:某商店经营T恤衫,已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件.若设销售单价为x(20≤x≤35的整数)元,该商店所获利润为y元.请你帮助分析,销售单价是多少元时,可以获利最多?你能运用二次函数的知识解决这个问题吗?【教学说明】用生活中的事例,更贴近实际生活,帮助学生理解题意,激发学生的学习热情.\n二、思考探究,获取新知1.教师提问:(1)此题主要研究哪两个变量之间的关系,哪个是自变量,哪个是因变量.(2)销售量可以表示为;销售额(销售总收入)可以表示为;所获利润与销售单价之间的关系式可以表示为.(3)当销售单价是元时,可以获得最大利润,最大利润是元.2.在解决第(3)问中,先引导学生观察得出此函数为二次函数,再引导学生探索思考“何时获得最大利润”的数学意义.【教学说明】在本章前面的学习中,学生已初步了解特殊二次函数最大(小)值的方法.鼓励学生大胆猜想、探索求此二次函数最大值的方法.【归纳结论】求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.三、运用新知,深化理解1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.(1)求y关于x的二次函数关系式,并注明x的取值范围;(2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?【分析】若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利为(x-30)元,从而可列出函数关系式.\n解:(1)根据题意,得y=(x-30)[60+2(70-x)]-500=-2x2+260x-6500(30≤x≤70).(2)y=-2x2+260x-6500=-2(x-65)2+1950.顶点坐标为(65,1950).二次函数草图略.经观察可知,当单价定为65元时,日均获利最多,是1950元.2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】先写出函数关系式,再求出函数的最大值.解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元.商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+100x),即y=-100x2+100x+200,配方得y=-100(x-)2+225,因为x=时,满足0≤x≤2,所以当x=时,函数取得最大值,最大值y=225.所以将这种商品的售价降低元时,能使销售利润最大.3.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?\n【教学说明】通过练习的过程,前后呼应,巩固已学知识,并让学生体会二次函数是解决实际问题的一类重要数学模型.四、师生互动、课堂小结求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:\n若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?在本课教学中,应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励. 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭