返回

沪科版(2022)七年级数学上册教案:1.1.2有理数的分类

首页 > 初中 > 数学 > 沪科版(2022)七年级数学上册教案:1.1.2有理数的分类

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

第2课时有理数的分类【知识与技能】1.理解有理数的概念.2.能够把给出的有理数分类,了解0在有理数分类中的作用.【过程与方法】引入有理数的概念,并通过各种师生活动加深学生对“有理数”概念和“有理数分类”方法的理解.【情感态度】由已学知识进一步提出问题,引导学生深入思考,培养学生主动思考的学习习惯.【教学重点】重点是知道有理数的含义及分类.【教学难点】难点是有理数的分类.一、情境导入,初步认识【情境1】实物投影,并呈现问题:把下列各数分别填入相应的框里:-16,0.04,,,+32,0,-3.6,-4.5,+0.9.【情境2】实物投影,并呈现问题:在情境1中,数0能放入正数框或负数框里吗?你认为有理数还可以怎样分类?【教学说明】学生独立思考后,小组讨论,教师注意引导学生将数分类时发现数0的特点.情境1让学生发现数0既不属于正数也不属于负数.情境2让学生思考有理数的其他分类方法.\n【教学说明】通过实现情景再现,让学生体会到数0的意义及有理数的分类,培养学生良好的数学应用意识.学生通过前面的情景引入,会进行有理数的分类,同时,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知1.有理数的概念问题1什么是有理数?上面提到的数都是有理数吗?问题2同学们学过的数中,有没有不是有理数的?举例说明.【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】整数和分数统称有理数.有限小数和无限循环小数都可以化成分数,无限不循环小数不是有理数.2.有理数的分类问题1有理数按定义如何分类?问题2有理数还有其他的分法吗?【教学说明】一方面让学生明确有理数的分类依据,另一方面让学生初步感知不同的分类方法.【归纳结论】有理数的分类:(1)按有理数的定义分类(2)按有理数的符号分类三、运用新知,深化理解\n1.下面说法中,错误的是()A.有理数是正数和负数的总称B.有理数是整数和分数的总称C.有理数是非负有理数和负有理数的总称D.有理数是非正有理数和正有理数的总称2.下面说法中,正确的是()A.在有理数中,零的意义仅表示没有B.0既不是正数,也不是负数,是有理数C.0是最小的整数D.0不是偶数3.将下列各数填在相应的横线上.-50,+10,1,,+102,51.2,-3.06,0,,.其中正整数有______________,分数有______________,正分数有______________,非正数有______________.4.把下列各数填在相应的括号中:-3,,3.6,,0,+235,-0.75,+3,-2005,,76.正数:{},负数:{},整数:{},分数:{},负整数:{},非负数:{}.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识,通过本环节的讲解与训练,让学生对数0的意义及有理数的分类有更加明确的认识.【答案】1.A2.B3.+10,1,+102,,51.2,-3.06,,\n51.2,,,-50,,-3.06,04.正数:{,3.6,+235,+3,,76}负数:{-3,,-0.75,-2005}整数:{-3,0,+235,+3,-2005,76}分数:{,3.6,,-0.75,}负整数:{-3,-2005}非负数:{,3.6,0,+235,+3,,76}四、师生互动,课堂小结1.什么叫有理数?有理数是如何分类的?举例说明.2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深印象,同时使知识系统化.1.布置作业:从教材第5页“习题1.1”中选取.2.完成同步练习册中本课时的练习. 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭