资料简介
2.频率与概率【知识与技能】1.了解运用列表法和树状图法理论分析随机事件的概率.2.理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】频率与概率的理解和应用.【教学难点】利用频率估计概率的理解.一、情境导入,初步认识问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.二、思考探究,获取新知问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?【分析】\n列表法树状图法思考:理论分析与重复试验得到的结果是否是一致的?问题2:见课本P142问题3学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.拓展延伸:课本P143“思考”【教学说明】让学生通过试验的方法来预测随机事件的概率.问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?归纳:P(小转盘指针停在蓝色区域)=P(大转盘指针停在蓝色区域)=思考1:从重复试验结果中你得出了哪些结论?对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.思考2:是不是所有的问题都可以这样呢?问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.【分析】由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮忙.【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.三、运用新知,深化理解1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.\n2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计,当n很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是______.(3)试估算口袋中黑、白两种颜色的球各有多少只.【答案】1.92.483.(1)0.6(2)0.60.4(3)8,12【教学说明】可让学生自主完成,分小组展示,教师点评.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.\n1.猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.2.一般地,当试验的可能结果是有限个而且各种结果发生的可能性相等时,可以用P(A)=的方式得出概率.当试验的所有可能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。