资料简介
2.图形的交换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?\n【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?\n【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?(2)△AOB的顶点坐标发生了什么变化?【归纳结论】横纵坐标都变为原来的.思考将例4中的△AOB以O为位似中心,将△AOB放大到原来的2倍得到△A′OB′.(1)△A′OB′可以画几个?(2)△AOB的顶点坐标发生了什么变化?4.概括:填充完成教材92页的表格.三、运用新知,深化理解1.如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到Rt△O′A′B′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P(x,y)为△AOB边上任一点,依次写出这几次变换后点P对应点的坐标.\n【教学说明】教师适当点拨,学生分组讨论.四、师生互动,课堂小结这节课你学到哪些知识?有哪些收获?还有哪些疑问?1.布置作业:从教材相应练习和“习题23.6”中选取.2.完成《创优作业》中本课时练习的“课时作业”部分.本节课采用集体讨论和活动探究`的数学方法,“以教师为主导,学生为主体”,教师的“导”立足于学生的学,以学为重心,放手让学生自主探索、归纳结论,体验学习的快乐,从而激发学生的学习兴趣.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。