资料简介
3.同位角、内错角、同旁内角【基本目标】1.理解同位角、内错角、同旁内角的意义;2.会熟练地识别图中的同位角、内错角、同旁内角.【教学重点】同位角、内错角、同旁内角的识别.【教学重点】较复杂图形中同位角、内错角、同旁内角的识别.一、情境导入,激发兴趣1.如图,直线AB交直线CD于点O,则从前面的学习中,我们也知道在相交所形成的四个角中,有些角是相邻且互补,有些角是对顶角且相等的.2.如图,直线AB分别与直线CD、直线EF都相交,交点分别为P、Q,则图中存在着八个角.这八个角中,有相同顶点的角是对顶角或是相邻且互补.那么其它没有相同顶点的角之间,又有什么位置关系?【教学说明】从两条相交直线引导到一条直线截两条直线是一个比较正常、合理的方法,也比较能理顺学生的思路.二、合作探究,探索新知如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成个角.现在,我们来研究其中没有公共顶点的两个角的关系.(一)同位角1.定义:如图,∠1和∠5,分别在直线AB、CD的,在直线EF的.具有这种位置关系的一对角叫做同位角.\n2.请你找出图中还有哪几对角构成同位角?3.两条直线被第三条直线所截构成的八个角中,共有对同位角.【教学说明】主要是找两个角的位置关系,注意语言的规范性.教师总结要强调同位角的特征.通过找其他的同位角,加深学生印象.(二)内错角1.定义:如图,∠3和∠5,分别在直线AB、CD的,在直线EF的.具有这种位置关系的一对角叫做内错角.2.请你找出图中还有哪几对角构成内错角?3.两条直线被第三条直线所截构成的八个角中,共有对内错角.(三)同旁内角1.定义:如图,∠3和∠6,分别在直线AB、CD的,在直线EF的.具有这种位置关系的一对角叫做同旁内角.2.请你找出图中还有哪几对角构成同旁内角?3.两条直线被第三条直线所截构成的八个角中,共有对同旁内角.【教学说明】注意总结方法和规律,与找同位角相比照,教师总结它们的特征.三、练习反馈,巩固提高1.找出图中所有的同位角、内错角、同旁内角.2.如图所示:(1)∠1,∠2,∠3,∠4,∠5,∠6是直线、被第三条直线所截而成的.(2)∠2的同位角是,∠1的同位角是.(3)∠3的内错角是,∠4的内错角是.\n(4)∠6的同旁内角是,∠5的同旁内角是,(5)∠4与∠A是同旁内角吗?3.如图所示:(1)AD,BC被BD所截而成的内错角是;(2)CD,AE被AC所截而成的内错角是;(3)AD,BF被AE所截而成的同位角是;(4)BD,AE被AD所截而成的同旁内角是.4.如图,四个图形中的∠1和∠2不是同位角的是()【教学说明】对于比较复杂的图形,教师提示学生可将图形进行分解,再与总结的特征项比较,得出结论,然后让学生总结相关的规律.【答案】1.左图:同位角:∠2与∠5,∠1与∠8,∠3与∠6,∠4与∠7内错角:∠1与∠6,∠4与∠5同旁内角:∠1与∠5,∠4与∠6右图:同位角:∠1与∠3,∠2与∠4内错角:无同旁内角:∠2与∠32.(1)AB,AC,EF(2)∠5,∠6(3)∠6,∠5(4)∠4,∠3(5)是3.(1)∠ADB与∠DBC(2)∠DCA与∠CAE(3)∠DAE与∠FBE(4)∠DAB与∠ADB4.C四、师生互动,课堂小结1.同位角、内错角、同旁内角\n2.注意:(1)以上三对角都有一边公共,是第三条直线(截线).(2)识别“第三条直线(两个角一边所在的同一直线)”是关键.【教学说明】教师结合练习,总结三对角的特征,以表格的形式呈现,便于学生理解和记忆.对于需要注意的问题予以强调,加深学生的理解.完成本课时对应的练习.这节课主要内容是两条直线被第三条直线所截成的不共顶点的角的位置关系.主要是同位角、内错角、同旁内角的概念,关键是如何找同位角、内错角、同旁内角.教学中,如果遇到复杂图形,首先根据角的边分解出基本图形.两个角的公共边所在直线为截线,一旦确定截线,可根据定义确定三类角,也可根据图形确定三类角,如F型的同位角,Z型的内错角,U型同旁内角.另外,对于同旁内角也可根据三角形内有三对同旁内角,四边形有四对同旁内角,确定三角形或四边形后再去找,很好用,也很快.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。