返回

2022年人教版九年级数学上册导学案:23.2.1 中心对称

首页 > 初中 > 数学 > 2022年人教版九年级数学上册导学案:23.2.1 中心对称

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

23.2中心对称23.2.1中心对称——中心对称的概念和性质一、新课导入1.导入课题:问题1:把图①中一个图案绕点O旋转180°,你有什么发现?问题2:如图②,线段AC、BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你又有什么发现?图①图②由此导入课题:中心对称.(板书课题)2.学习目标:(1)通过具体实例认识中心对称,弄清楚中心对称及其有关概念的含义.(2)探究并归纳出中心对称的性质.(3)会作与一个图形关于某个点成中心对称的另一个图形.3.学习重、难点:重点:中心对称的概念和性质.难点:中心对称性质的证明.二、分层学习1.自学指导:(1)自学内容:教材第64页最后一段话之前的内容.(2)自学时间:5分钟.(3)自学方法:通过操作,从具体的情景中感受,理解、归纳中心对称及相关概念.(4)自学参考提纲:①把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.,②中心对称是指几个图形之间的位置关系?一个图形绕一点旋转能与另一个图形重合就是中心对称吗?两个.不一定,必须是绕一点旋转180°能与另一个图形重合才是中心对称.③在下列四组图形中右边数字与左边数字成中心对称的有(1)(2)(3)(4).(1)(2)(3)(4)2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:通过自学参考提纲的第②③题,了解学生是否能抓准中心对称的本质特征.②差异指导:依据学情予以点拨、指导.(2)生助生:小组内相互交流、研讨.4.强化:两个图形成中心对称须具备三个条件:①能找到一个对称中心;②旋转角为180°;③这两个图形旋转后能重合.1.自学指导:(1)自学内容:教材第64页最后一段话到第65页例题之前的内容.(2)自学时间:5分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①按下列步骤动手画图:第一步:用三角尺画出△ABC;第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,再画出△A′B′C′;第三步:移开三角尺,并用虚线连接对应点AA′,BB′,CC′.②思考下列问题:a.△ABC与△A′B′C′关于点O对称吗?对称.b.△ABC与△A′B′C′全等吗?为什么?全等.由图形旋转的性质可知△ABC≌△A′B′C′.,c.线段AA′、BB′、CC′有何关系?相交于点O.d.点O在线段AA′、BB′、CC′的什么位置?点O在线段AA′、BB′、CC′的中点处.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否在探究提纲的指引下,顺利完成相应内容的学习.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:交流学习成果,归纳中心对称的性质.1.自学指导:(1)自学内容:教材第65页至第66页的例1.(2)自学时间:5分钟.(3)自学方法:阅读教材并弄清画点A关于点O的对称点的画法,并在下图中动手画一画.(4)自学参考提纲:①如图,怎样画点A关于点O的对称点?连接AO,在AO的延长线上截取OA′=OA,即可求得点A关于点O的对称点A′.图①图②②如图②,怎样画△ABC关于点O对称的△A′B′C′?作出A,B,C三点关于点O的对称点A′,B′,C′,依次连接A′B′,B′C′,C′A′,就可得到与△ABC关于点O对称的△A′B′C′.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:,(1)师助生:①明了学情:观察学生能否正确画图.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:(1)画一个点关于另一个已知点的对称点的操作要点.(2)作一个图形关于一个已知点的对称图形的操作要点.(3)练习:①分别画出图1中各图形关于点O对称的图形.图1图2②图2中的两个四边形关于某点对称,找出它们的对称中心.解:如图所示,点O即为它们的对称中心.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何成功的经验或自我感觉不足的地方?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、小组交流协作情况、学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.学生在探究新知的过程中,教师给予学生更多的互动时间,联系生活中的例子,让学生对知识易于理解,易于接受.教学过程中要强调中心对称的性质和利用中心对称的性质作图的方法.从课堂发言和练习来看,学生积极动手动脑,教师适当引导,学生成为课堂的主人.(时间:12分钟满分:100分),一、基础巩固(70分)1.(10分)下列结论中,错误的是(A)A.形状大小完全相同的两个图形一定关于某点成中心对称B.成中心对称的两个图形,对称中心到两对称点的距离相等C.成中心对称的两图形,对称中心在两对称点的连线上D.成中心对称的两图形,对应线段平行(或在同一直线上)且相等2.(10分)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有(D)A.1个B.2个C.3个D.4个第2题图第3题图第4题图3.(10分)如图,△ABC和△AB′C′成中心对称,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(D)A.4B.C.D.4.(10分)如图,四边形ABCD与四边形FGHE关于点O成中心对称,下列说法中错误的是(D)A.AD∥EF,AB∥GFB.BO=GOC.CD=HE,BC=GHD.DO=HO5.(10分)如图,两个卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:如图:点O即为所求的对称中心.6.(20分)分别画出下面图形关于点O对称的图形.解:如图:,二、综合应用(20分)7.(20分)如图,△DEC是由△ABC经过如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下、向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有(A)A.①②B.①③C.②③D.①②③三、拓展延伸(10分)8.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.解:(1)AE与BF关于点C中心对称.理由:因为△FEC是由△ABC绕点C顺时针旋转180°得到的,所以△FEC于△ABC关于点C成中心对称,根据中心对称的性质可知点A、F,点B、E分别关于点C成中心对称,所以它们的连线AE与BF关于点C中心对称.(2)S四边形ABFE=4S△ABC=12cm2. 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭