资料简介
期末数学试卷一.选择题1.下列哪个方程是一元二次方程( )A.2x+y=1B.x2+1=2xyC.x2+=3D.x2=2x﹣32.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元3.把一元二次方程(x+3)(x﹣5)=2化成一般形式,得( )A.x2+2x﹣17=0B.x2﹣8x﹣17=0C.x2﹣2x=17D.x2﹣2x﹣17=04.sin60°+tan45°的值等于( )A.B.C.D.15.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( )A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定6.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )A.B.C.D.7.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A.90B.180C.270D.36008.一元二次方程x2+6x+9=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,AB是⊙O的直径,∠BOD=120°,点C为的中点,AC交OD于点E,OB=2,则AE的长为( )16\nA.B.C.D.10.已知一元二次方程ax2+bx+c=0(a≠0)①若方程两根为﹣1和2,则2a+c=0;②b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立其中正确的是( )A.只有①②③B.只有①③④C.只有①②③④D.只有①④11.如图,在等腰△ABC中,AB=AC,tanC=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为( )A.0.75B.0.8C.1.25D.1.3512.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙C,且半径都是0.5cm,则图中三个阴影部分面积之和等于( )A.cm2B.cm2C.cm2D.cm2二.填空题13.在△ABC中,∠A、∠B为锐角,且|tanA﹣1|+(﹣cosB)2=0,则∠C= °.14.已知⊙O的半径为3cm,点A、B、C是直线l上的三个点,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,则直线l与⊙O的位置是 .15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为 .16\n16.两个相似三角形的相似比为2:3,他们的周长差为30,则较大三角形的周长为 .17.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为 .三.解答题18.计算(1)2sin30°﹣tan60°+tan45°;(2)tan245°+sin230°﹣3cos230°19.用适当的方法解下列方程:(1)(x﹣2)2﹣16=0(2)5x2+2x﹣1=0.20.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.16\n21.如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)∠ADC的正弦值.22.如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M作AB的垂线交BC的延长线于点E,点F是ME上的一点,且EF=CF.(1)求证:直线CF是⊙O的切线;(2)若∠B=2∠A,AB=8,且AC=CE,求BM的长.16\n23.已知关于x的方程x2﹣2(m+1)x+m2+2=0.(1)若方程总有两个实数根,求m的取值范围;(2)若两实数根x1、x2满足(x1+1)(x2+1)=8,求m的值.24.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?25.如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)16\n26.如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.27.庆阳市是传统的中药材生产区,拥有丰富的中药材资源,素有“天然药库”“中药之乡”的美称.优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种.某种植户2016年投资20万元种植中药材,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植中药材.16\n 参考答案一.选择题1.解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.2.解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.3.解:(x+3)(x﹣5)=2,去括号得:x2﹣5x+3x﹣15=2,移项得:x2﹣5x+3x﹣15﹣2=0,合并同类项得:x2﹣2x﹣17=0,故选:D.4.解:sin60°+tan45°16\n=+1=.故选:B.5.解:∵点P的坐标为(2,1),点Q的坐标为(0,6),∴QP==>5,∴点Q与⊙P的位置关系是:点Q在圆⊙P外.故选:A.6.解:sinA==,故选:A.7.解:∵两个相似三角形的一组对应高的长分别为15,5,∴两三角形的相似比为3:1,∴其面积比为32:12=9:1,∴设两相似三角形的面积分别为9x和x,根据题意列方程得,9x﹣x=80,x=10.则较大正六边形的面积为90,故选:A.8.解:∵△=62﹣4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.故选:A.9.解:连接OC.∵=,∴∠DOC=∠BOC=60°,∴∠AOD=60°,16\n∴∠AOD=∠DOC,∴=,∴OD⊥AC,∴∠AEO=90°,∴AE=AO•sin60°=,故选:A.10.解:若方程两根为﹣1和2,则=﹣1×2=﹣2,即c=﹣2a,2a+c=2a﹣2a=0,故①正确;若b>a+c,设a=4,b=10,c=5,则△<0,一元二次方程ax2+bx+c=0没有实数根,故②错误;若b=2a+3c,则△=b2﹣4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=4abm﹣4abm﹣4ac+b2=b2﹣4ac.故④正确;故选:B.11.解:连接AG,∵S△CGA+S△BGA=S△ABC,∴+=×AC×BD,∵AC=AB,∴GE+GF=BD,∵BD=4,GE=1.5,∴GF=2.5,16\n∵tanC=2=,BD=4,∴CD=2,由勾股定理得:BC===2,∵EG⊥AC,BD⊥AC,∴EG∥BD,∴△CEG∽△CDB,∴=,∴=,解得:BG=,在Rt△BFG中,由勾股定理得:BG2=BF2+GF2,()2=BF2+2.52,解得:BF=1.25(负数舍去),故选:C.12.解:∵⊙A、⊙B、⊙C的半径都是0.5,扇形的三个圆心角正好构成三角形的三个内角,∴阴影部分扇形的圆心角度数为180°,∴S阴影==.故选:B.二.填空题13.解:由题意得,tanA=1,cosB=,则∠A=45°,∠B=60°,则∠C=180°﹣45°﹣60°=75°.故答案为:75.14.解:因为⊙O的半径为3cm,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,2cm<3cm,所以直线l与⊙O的位置是相交;故答案为:相交.16\n15.解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.16.解:设较大三角形的周长是3x,较小三角形的周长是2x,则3x﹣2x=30,解得x=30,那么较大三角形的周长是3x=90,故答案为:90.17.解:过点O作OH⊥AB与点H,∵△ABC是等边三角形,∴∠CAB=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OA=1,故答案为:1三.解答题18.解:(1)2sin30°﹣tan60°+tan45°=2×﹣+1=2﹣;(2)tan245°+sin230°﹣3cos230°16\n=×12+()2﹣3×()2=+﹣=﹣.19.解:(1)∵(x﹣2)2﹣16=0,∴(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;(2)∵a=5,b=2,c=﹣1,∴△=22﹣4×5×(﹣1)=24>0,则x==,即x1=,x2=.20.解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴=,解得:x=2,∴AE=2.21.解:(1)如图,作AH⊥BC于H.在Rt△ACH中,∵cosC==,AC=,16\n∴CH=1,AH==1,在Rt△ABH中,∵tanB==,∴BH=5,∴BC=BH+CH=6.(2)∵BD=CD,∴CD=3,DH=2,AD==在Rt△ADH中,sin∠ADH==.∴∠ADC的正弦值为.22.(1)证明:如图,连接OC,设EM交AC于H.∵AB是直径,∴∠ACB=∠ACE=90°,∵FE=FC,∴∠E=∠FCE,∴∠E+∠CHE=90°,∠FCE+∠FCH=90°,∴∠FCH=∠FHC,∵∠A+∠AHM=90°,∠AHM=∠FHC=∠FCH,∴∠FCH+∠A=90°,∵OC=OA,∴∠A=∠OCA,∴∠FCH+∠OCA=90°,∴∠FCO=90°,16\n∴FC⊥OC,∴CF是⊙O的切线.(2)解:在Rt△ABC中,∵∠ACB=90°,AB=8,∠B=2∠A∴∠A=30°,∴BC=AB=4,AC=BC=4,∵AC=CE,∴CE=4,∴BE=BC+CE=4+4,在Rt△BEM中,∠BME=90°,∠E=30°∴BM=BE=2+2.23.解:(1)∵关于x的方程x2﹣2(m+1)x+m2+2=0总有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,解得:m≥.(2)∵x1、x2为方程x2﹣2(m+1)x+m2+2=0的两个根,∴x1+x2=2(m+1),x1x2=m2+2.∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2)+1=8,∴m2+2+2(m+1)+1=8,整理,得:m2+2m﹣3=0,即(m+3)(m﹣1)=0,解得:m1=﹣3(不合题意,舍去),m2=1,∴m的值为1.24.解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:=,解得:PD=9.6(米).答:该古城墙的高度是9.6m.16\n25.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.26.(1)证明:∵AB是直径,∴∠ACB=90°,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,16\n∴CD=CE.(2)解:由(1)可知:∠ABC=∠E=30°,∠ACB=90°,∴∠CAB=60°,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2,连接OC,则∠COB=120°,∴S阴=S扇形OBC﹣S△OBC=﹣×××2=﹣.27.解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=﹣3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).16
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。