资料简介
第1章有理数单元综合测评一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是()℃.A.44B.34C.﹣44D.﹣342.|﹣3|的相反数是()A.3B.﹣3C.D.﹣3.下列说法不正确的是()A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是()A.2B.3C.4D.55.一个数的相反数是3,这个数是()A.﹣3B.3C.D.6.若|a|=﹣a,a一定是()A.正数B.负数C.非正数D.非负数7.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位8.把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或1D.5或﹣19.大于﹣2.2的最小整数是()A.﹣2B.﹣3C.﹣1D.010.若|x|=4,且x+y=0,那么y的值是()A.4B.﹣4C.±4D.无法确定-14-\n二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示__________.12.平方是它本身的数是__________.13.计算:|﹣4|×|+2.5|=__________.14.绝对值等于2的数是__________.15.绝对值大于1并且不大于3的整数是__________.16.最小的正整数是__________,最大的负整数是__________.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1__________﹣2;(2)__________﹣0.3;(3)|﹣3|__________﹣(﹣3).18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.19.数据810000用科学记数法表示为__________.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;__________;__________;…;第2013个数是__________.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1②﹣③+3.2④0⑤⑥﹣6.5⑦+108⑧﹣4⑨﹣6(1)正整数集合{…}(2)正分数集合{…}(3)负分数集合{…}(4)负数集合{…}.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)23.(16分)计算:-14-\n(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
①②③④⑤⑥+3﹣2+4﹣6+1﹣3(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?为什么?-14-\n单元测试解析一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是()℃.A.44B.34C.﹣44D.﹣34【考点】有理数的减法.【专题】应用题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:39﹣(﹣5)=39+5=44℃.故选A.【点评】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.2.|﹣3|的相反数是()A.3B.﹣3C.D.﹣【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.3.下列说法不正确的是()A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数-14-\nD.1是绝对值最小的正数【考点】有理数.【分析】根据有理数的分类,以及绝对值得性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0,进行分析即可.【解答】解:A、0既不是正数,也不是负数,说法正确;B、0的绝对值是0,说法正确;C、一个有理数不是整数就是分数,说法正确;D、1是绝对值最小的正数,说法错误,0.1的绝对值比1还小.故选:D.【点评】此题主要考查了绝对值和有理数的分类,关键是掌握绝对值得性质.4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是()A.2B.3C.4D.5【考点】正数和负数.【分析】根据大于0的数是正数,找出所有的正数,然后再计算个数.【解答】解:|﹣9|=9,∴大于0的数有4.5,|﹣9|,共2个.故选A.【点评】本题主要考查大于0的数是正数的定义,是基础题.5.一个数的相反数是3,这个数是()A.﹣3B.3C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:3的相反数是﹣3,故选:A.-14-\n【点评】本题考查了相反数,注意相反数是相互的,不能说一个数是相反数.6.若|a|=﹣a,a一定是()A.正数B.负数C.非正数D.非负数【考点】绝对值.【分析】根据负数的绝对值等于他的相反数,可得答案.【解答】解:∵非正数的绝对值等于他的相反数,|a|=﹣a,a一定是非正数,故选:C.【点评】本题考查了绝对值,注意负数的绝对值等于他的相反数.7.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.8.把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或1D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D-14-\n【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.9.大于﹣2.2的最小整数是()A.﹣2B.﹣3C.﹣1D.0【考点】有理数大小比较.【分析】由于﹣2.2介于﹣2和﹣3之间,所以大于﹣2.2的最小整数是﹣2.【解答】解:∵﹣3<﹣2.2<﹣2,∴大于﹣2.2的最小整数是﹣2.故选:A.【点评】本题解题的关键是准确确定所给数值的大小,是一道基础题目,比较简单.10.若|x|=4,且x+y=0,那么y的值是()A.4B.﹣4C.±4D.无法确定【考点】相反数;绝对值.【分析】首先根据绝对值的性质可得x=±4,再根据x+y=0分情况计算即可.【解答】解:∵|x|=4,∴x=±4,∵x+y=0,∴当x=4时,y=﹣4,当x=﹣4时,y=4,故选:C.【点评】此题主要考查了绝对值,关键是熟悉绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示下降8米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”是相对的,∵上升15米记作+15米,-14-\n∴﹣8米表示下降8米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.平方是它本身的数是0,1.【考点】有理数的乘方.【专题】推理填空题.【分析】根据平方的性质,即正数的平方是正数,0的平方是0,负数的平方是正数,进行回答.【解答】解:平方等于它本身的数是0,1.故答案为:0,1.【点评】此题考查了有理数的乘方.注意:倒数等于它本身的数是1,﹣1;平方等于它本身的数是0,1;相反数等于它本身的数是0;绝对值等于它本身的数是非负数.13.计算:|﹣4|×|+2.5|=10.【考点】有理数的乘法.【分析】一个数的绝对值为正数,再根据有理数的乘法法则求解.【解答】解:|﹣4|×|+2.5|=4×2.5=10.故应填10.【点评】能够求解一些简单的有理数的运算问题.14.绝对值等于2的数是±2.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义求解.【解答】解:∵|2|=2,|﹣2|=2,∴绝对值等于2的数为±2.故答案为±2.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.15.绝对值大于1并且不大于3的整数是±2,±3.-14-\n【考点】绝对值.【专题】计算题.【分析】找出绝对值大于1且不大于3的整数即可.【解答】解:绝对值大于1并且不大于3的整数是±2,±3.故答案为:±2,±3.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.16.最小的正整数是1,最大的负整数是﹣1.【考点】有理数.【分析】根据有理数的相关知识进行解答.【解答】解:最小的正整数是1,最大的负整数是﹣1.【点评】认真掌握正数、负数、整数的定义与特点.需注意的是:0是整数,但0既不是正数也不是负数.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1>﹣2;(2)<﹣0.3;(3)|﹣3|=﹣(﹣3).【考点】有理数大小比较.【分析】本题对有理数进行比较,看清题意,一一进行比较即可.【解答】解:(1)1为正数,﹣2为负数,故1>﹣2.(2)可将两数进行分母有理化,﹣=﹣,﹣0.3=﹣,则﹣<﹣0.3.(3)|﹣3|=3,﹣(﹣3)=3,则|﹣3|=﹣(﹣3).【点评】本题考查有理数的大小比较,对分式可将其化为分母相同的形式,然后进行比较即可.18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是﹣1.【考点】数轴.【分析】本题可根据数轴上点的移动和数的大小变化规律,左减右加来计算.【解答】解:依题意得该数为:3﹣7+3=﹣1.-14-\n故答案为:﹣1.【点评】考查了数轴,正负数在实际问题中,可以表示具有相反意义的量.本题中,向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.数据810000用科学记数法表示为8.1×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:810000=8.1×105,故答案为:8.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;﹣;;…;第2013个数是﹣.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分子都是1,分母是从1开始的连续自然数,并且第奇数个数是负数,第偶数个数是正数,然后依次写出即可.【解答】解:﹣;;﹣;;﹣;;…,第2013个数是﹣.故答案为:﹣;;﹣.【点评】本题是对数字变化规律的考查,注意从分子、分母和正负情况考虑即可,是基础题.三、解答题(共60分)-14-\n21.把下列各数的序号填在相应的数集内:①1②﹣③+3.2④0⑤⑥﹣6.5⑦+108⑧﹣4⑨﹣6(1)正整数集合{…}(2)正分数集合{…}(3)负分数集合{…}(4)负数集合{…}.【考点】有理数.【分析】(1)根据大于0的整数是正整数,可得正整数集合;(2)根据大于0的分数是正分数,可得正分数集合;(3)根据小于0的分数是负分数,可得负分数集合;(4)根据小于0的数是负数,可得负数集和.【解答】解:(1)正整数集合{1,108,…};(2)正分数集合{+3.2,,…};(3)负分数集合{﹣,﹣6.5,…}(4)负数集合{﹣,﹣6.5,﹣4,﹣6…}.【点评】本题考查了有理数,注意负整数和负分数统称负数.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)【考点】有理数大小比较;数轴.【分析】根据数轴的特点在数轴上标出各数,然后根据数轴上的数右边的总比左边的大排列即可.【解答】解:|﹣4|=4,﹣(﹣1)=1,﹣(+3)=﹣3,﹣(+3)<﹣2<0<﹣(﹣1)<2.5<|﹣4|.【点评】本题考查了数轴,有理数的大小比较,比较简单,熟记数轴上的数右边的总比左边的大是解题的关键.-14-\n23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24﹣)×=﹣4﹣=﹣4;(3)原式=﹣18×××(﹣)=;(4)原式=64﹣(81﹣)=64﹣81+=37.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.【考点】有理数的混合运算;有理数;相反数;倒数.【专题】计算题.【分析】根据相反数与倒数的定义得到a=﹣1,b=2,cd=1,然后代入a+b﹣cd得﹣1+2﹣1,然后进行加减运算即可.【解答】解:∵a是最大的负整数,b是﹣2的相反数,c与d互为倒数,∴a=﹣1,b=2,cd=1,∴a+b﹣cd=﹣1+2﹣1=0.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了相反数与倒数.-14-\n25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣2)⊗(﹣3)=6﹣1=5,则原式=5⊗(﹣4)=﹣20﹣1=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?【考点】数轴;相反数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【解答】解:(1)+15﹣25+20﹣40=﹣30(千米),答:在A地西30千米处;②15+|﹣25|+20+|﹣40|=100(千米),8.9×=8.9(升).答:本次耗油为8.9升.【点评】本题考查了数轴,利用了有理数的加法运算.27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
①②③④⑤⑥+3﹣2+4﹣6+1﹣3(1)有几个篮球符合质量要求?-14-\n(2)其中质量最接近标准的是几号球?为什么?【考点】正数和负数.【专题】图表型.【分析】(1)根据题意,只要每个篮球的质量标记的正负数的绝对值不大于5的,即符合质量要求;(2)篮球的质量标记的正负数的绝对值越小的越接近标准.【解答】解:(1)|+3|=3,|﹣2|=2,|﹣4|=4,|﹣6|=6,|+1|=1,|﹣3|=3;只有第④个球的质量,绝对值大于5,不符合质量要求,其它都符合,所以有5个篮球符合质量要求.(2)因|+1|=1在6个球中,绝对值最小,所以⑤号球最接近标准质量.【点评】本题主要考查了正负数表示相反意义的量,注意绝对值越小的越接近标准.-14-
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。