资料简介
4.2直线、射线、线段第1课时直线、射线、线段一、新课导入1.导入课题:我们在小学就已经学过线段、射线和直线,你能形象地说出它们的意义吗?你还能说说它们的联系与区别吗?这节课我们就开始进一步对它们的意义、表示法及联系进行研究.(板书课题)2.三维目标:(1)知识与技能①进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.②结合实例,了解两点确定一条直线的性质,并能初步应用.③会画一条线段等于已知线段.(2)过程与方法能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.(3)情感态度初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.3.学习重、难点:重点:知道并领会直线的性质,直线、射线、线段的表示方法.难点:直线、射线、线段的表示方法及符号语言、文字语言、图形语言之间的转换.\n二、分层学习1.自学指导:(1)自学内容:教材第125页至倒数第4行止.(2)自学时间:8分钟.(3)自学要求:认真看课本,并结合下面的提纲积极思考、动手操作.(4)自学参考提纲:①探究并回答下面的问题:a.如图,经过点O画直线,能画几条?经过两点A,B呢?动手试一试.·BO··A经过点O能画出无数条直线,经过两点A、B只能画一条直线.b.经过两点画直线有什么规律?怎样用简洁的语言概括呢?经过两点有一条直线,并且只有一条直线.两点确定一条直线.c.怎样理解“确定”一词的含义?d.想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.做家具时弹墨线.②a.为了便于说明和研究,几何图形一般都要用字母来表示,通过以往的学习,我们知道“点”用大写字母表示,那么,“直线”又该如何表示?b.用不同的方法表示下图中的直线:\n直线GH(HG),直线m.c.判断下列语句是否正确,并把错误的语句改正过来:Ⅰ.一条直线可以表示为“直线A”.Ⅱ.一条直线可以表示为“直线ab”.Ⅲ.一条直线既可以记为“直线AB”,又可以记为“直线BA”,还可以记为“直线m”.Ⅰ.×;直线a;Ⅱ.×;直线AB;Ⅲ.√.③a.观察右图,然后选择恰当的词语填空:Ⅰ.点O在直线l上(填“上”或“外”);直线l经过(填“经过”或“不经过”)点O.Ⅱ.点P在直线l外(填“上”或“外”);直线l不经过(填“经过”或“不经过”)点P.b.由a总结点与直线的位置关系,与同学交流一下.c.根据下列语句画出图形:Ⅰ.直线EF经过点CⅡ.点A在直线l外Ⅰ.Ⅱ.④a.如图,请描述直线a和直线b的位置关系.直线a和直线b相交于点O.b.根据下列语句画出图形:Ⅰ.直线AB与直线CD相交于点P.Ⅱ.三条直线m、n、l相交于点E.\nⅠ.Ⅱ.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视,了解学生的自学进度和对相关知识的理解掌握情况,收集学生自学中存在的问题.②差异指导:教师对学生在自学过程中存在的问题进行点拨.(2)生助生:各小组学生相互交流学习成果帮助解决存在的疑点问题.4.强化:(1)直线的性质及其表示方法;点和直线的位置关系;相交线的意义.(2)练习:用适当的语句描述图中点与直线的关系.解:①点B在直线l上,点P、A在直线外不同的两侧.②点A在直线b、c交点上,点B在直线a、b交点上,点C在直线a、c交点上.1.自学指导:(1)自学内容:教材第125页最后一行至第126页练习之前的内容.(2)自学时间:3分钟.\n(3)自学要求:认真看书,弄清直线、射线、线段之间的关系;类比直线的表示方法,学会射线、线段的表示方法.(4)自学参考提纲:①射线、线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段?②判断下列说法是否正确:a.线段AB与射线AB都是直线AB的一部分.(√)b.直线AB与直线BA是同一条直线.(√)c.射线AB与射线BA是同一条射线.(×)d.端点重合的两条射线一定是同一条射线.(×)e.把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(√)③按下列语句画出图形:a.点A在线段MN上b.射线AB不经过点Pc.经过点O的三条线段a、b、cd.线段AB、CD相交于点B2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视,了解学生自学进度和自学中存在的问题.②差异指导:根据学情,有针对性地进行分类点拨和指导.(2)生助生:各小组学生相互交流学习帮助,纠错.4.强化:\n(1)直线、射线、线段的关系:射线、线段都是直线的一部分;把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(2)射线、线段的表示方法.三、评价1.学生的自我评价:各小组学生代表交流自己在本节课学习中的态度,学习方法和成果,并自查学习中存在的不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的态度、情感、学法和成效进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时主要介绍直线、射线、线段的概念、表示方法以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.一、基础巩固1.(10分)经过两点有一条直线,并且只有一条直线.\n2.(10分)点与直线的位置关系有两种,分别是直线上和直线外.3.(10分)在锯木料时,一般先在木板上画出两点,然后过两点弹出一条墨线,其中用到的数学原理是两点确定一条直线.4.(10分)如右图所示,直线AB和直线CD相交于点P;直线AB和直线EF相交于点Q;点R是直线CD和直线EF的交点.5.(10分)下列语句准确规范的是(D)A.直线a,b相交于一点mB.延长直线ABC.延长射线AD到点B(A是端点)D.直线AB、CD相交于点M6.(10分)如图,A、B、C三点在一条直线上.(1)图中有几条直线,怎样表示它们?(2)图中有几条线段,怎样表示它们?(3)射线AB与射线AC是同一条射线吗?(4)图中共有几条射线,写出以点B为端点的射线.解:(1)1条,直线AB,直线BA,直线AC,直线CA,直线BC,直线CB.(2)3条,线段AB(BA),线段AC(CA),线段BC(CB).(3)是.(4)6条,射线BC,射线BA.二、综合应用7.(10分)读下列语句并分别画出图形.(1)直线l经过A、B、C三点,并且点C在A与B之间.(2)两条直线m与n相交于点P.\n(3)P是直线a外一点,过点P有一条直线b与直线a相交于点Q.解:(1);(2);(3)8.(20分)如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD相交于点E;(2)连接线段AC、BD相交于点F;(3)连接线段AD,并将其反向延长;(4)作射线BC.解:如图.三、拓展延伸9.(10分)在同一平面内有三个点A、B、C,过其中任意两个点画直线,可以画出的直线条数是多少?若过四个点A、B、C、D呢?解:当A、B、C在同一直线上时,过其中任意两个点共可以作一条直线;当A、B、C不在同一直线上时,过其中任意两个点共可以作三条直线;当A、B、C、D在同一直线上时,过其中任意两个点共可以作一条直线;当A、B、C、D中有三个点在同一直线上时,过其中任意两个点共可以作四条直线;当A、B、C、D中均不在同一直线上时,过其中任意两个点共可以作六条直线.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。