资料简介
第2课时有理数的大小比较【知识与技能】会利用绝对值比较两个负数的大小.【过程与方法】利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.【情感态度】结合本课教学特点,激发学生观察、探究、发现数学问题的兴趣,体验运用数学知识解决问题的喜悦.【教学重点】利用绝对值比较两个负数的大小.【教学难点】利用绝对值比较两个异分母负分数的大小.一、情境导入,初步认识情境若规定向北走为正,两辆汽车从同一点O出发,向北分别开出-11.5米、-15米到达A、B两处.提问①他们行驶的路线相同吗?②哪辆汽车开出较远?③想一想,-11.5与-15相比,哪个数更大?【教学说明】结合正负数的概念及绝对值的学习,逐步引入新课,将两个负数的大小比较引入到学生面前,使学生对新课有初步的认识.二、思考探究,获取新知思考1数轴上从左到右的几个数的大小关系.出示一组数:-2,-2,3,1,1,0.画出数轴,在数轴上表示出这些数,并用“<”把它们连接起来.【归纳结论】在数轴上,左边的点表示的有理数总比右边的点表示的有理数小.即正数大于0,0大于负数,正数大于负数.思考2不画数轴表示出数,怎样比较两个负数的大小呢?试比较-与-\n的大小.【归纳结论】学过绝对值后,可以将比较负数的大小转化成比较它们绝对值的大小,即比较两个正数的大小.比较法则:两个负数,绝对值大的反而小.比较步骤:①分别计算出各数的绝对值;②比较绝对值的大小;③根据“比较法则”做出正确的判断.三、典例精析,掌握新知例(1)比较下列各组数的大小.(2)按从小到大的顺序,用“<”号把下列各数连接起来.【教学说明】1.比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.\n2.异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.3.在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.4.教师引导学生做教材第13页练习.四、运用新知,深化理解1.(1)绝对值小于3的负整数有,绝对值不小于2且不大于5的非负整数有.(2)用“>”“=”“<”填空:①-7-5;②-0.1-0.01;③-|-3.2|-(-3.2);④-|-103|-3.34;⑤--;⑥-(-)0.025;⑦-π-3.14;⑧--.(3)若|x+3|=5,则x=.2.(1)下列判断正确的是()A.a>-aB.2a>aC.a>-1aD.|a|≥a(2)下列分数中,大于-而小于-的数是()(3)|m|与-5m的大小关系是()A.|m|>-5mB.|m|<-5mC.|m|=-5mD.以上都有可能\n【教学说明】通过练习巩固新知,教师可先让学生自主思考,然后学生抢答.在师生共同完成的过程中,给学生学习信心与鼓励.【答案】1.(1)-1,-22、3、4、5(2)①<②<③<④>⑤>⑥>⑦<⑧>(3)2或-82.(1)D(2)B(3)D五、师生互动,课堂小结通过本节课所学的有理数的大小比较你能掌握以下两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小”来比较;(2)利用比较法则:“正数大于零,负数小于零,两个负数,绝对值大的反而小”来进行.1.布置作业:从教材习题1.2中选取.2.完成练习册中本课时的练习.本课时先借助数轴来直观比较有理数的大小,进而由浅入深地通过法则比较大小.在循序渐进的过程中,培养学生动脑思考的习惯,并体会数形结合的重要思想.教学中,给学生独立思考与合作交流的空间,加深理解,最后通过练习加以巩固.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。