资料简介
1.4.1有理数的乘法第3课时有理数的乘法运算律一、导学1.课题导入:在小学的数学学习中,学习乘法的交换律、结合律与分配律,那么学习了有理数后,这些运算律是否仍然适用呢?这就是这节课我们要研究的内容.2.学习目标:(1)知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.(2)过程与方法通过对问题的探索,培养观察、分析和概括的能力.(3)情感态度能面对数学活动中的困难,有学好数学的自信心.3.学习重、难点:重点:乘法的运算律.难点:灵活运用运算律进行计算.4.自学指导:(1)自学内容:教材第32页“练习”以下到教材第33页的内容.(2)自学时间:7分钟.(3)自学要求:认真阅读课文,体验运算律在计算中有什么作用.(4)自学参考提纲:①\n乘法交换律是:两个数相乘,交换因数的位置,积相等,写成数学式子为ab=ba,举两个数(至少有一个是负数)验证乘法交换律.3×(-4)=(-4)×3=-12②乘法结合律是:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,写成数学式子为(ab)c=a(bc),举三个数(至少有一个数是负数)验证乘法结合律.[3×(-4)×5]=3×[(-4)×5]=-60③分配律是:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,写成数学式子为a(b+c)=ab+ac,举三个数(至少有一个数是负数)验证分配律.3×(-4+5)=3×(-4)+3×5=3④例4中,比较两种解法,他们在运算顺序上有什么区别?解法1、2运用了什么运算律?哪种解法更简便?解法1先算加减法,再算乘法;解法2先算乘法,再算加减法;运用了乘法分配律;第二种更简便.⑤下列式子的书写是否正确.a×b×cab·2m×(m+n)三个式子的书写均不正确.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生中了解学生自学中存在的问题.(2)差异指导:指导困难的学生,并引导小组讨论.2.生助生:学生相互帮助解决自学中的疑难问题.\n四、强化1.解题要领:①观察算式;②看是否可以进行简便运算;③运算顺序.2.代数式的书写要求:①数与字母相乘;②字母与字母相乘.3.计算:(1)(-85)×(-25)×(-4)(2)(-)×15×(-1)(3)(-)×(-30)(4)(-)×(-)+(-)×(+)解:(1)-8500;(2)15;(3)-25;(4)-6.五、评价1.学生的自我评价(围绕三维目标):交流本节课学习中的得与失.2.教师对学生的评价:(1)表现性评价:对本节课学习过程中的积极表现与不足进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课主要学习乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.\n一、基础巩固(60分)1.(10分)计算(-1000)×(5-10)的值为(D)A.1000B.1001C.4999D.50012.(10分)下列计算(-55)×99+(-44)×99-99正确的是(C)A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-196023.(40分)计算.(1)(-19)×(-98)×0×(-25)(2)(-0.2)×(-0.4)×(-2)×(-)(3)15×(-)×1×(-1)(4)(-100)×(-4)×(-1)×0.25解:(1)0;(2)0.04;(3);(4)-100二、综合应用(30分)4.(30分)计算.(1)4×(-96)×0.25×(-)(2)(8-1-0.04)×(-)(3)(+33)×(-2.5)×(-7)×(+4)×(-0.3)(4)79×(-7)(5)(-14)×-3.14×(-)+(-)×14+×3.14\n解:(1)2;(2)-4.97;(3)-700;(4)-;(5)-10.86三、拓展延伸(10分)5.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6,如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?类似地:2ab-5ab又等于什么呢?解:-2a+3a=(-2+3)a;2ab-5ab=(2-5)ab.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。