返回

青岛版四上第4单元平行与相交4.3点到直线的距离教案

首页 > 小学 > 数学 > 青岛版四上第4单元平行与相交4.3点到直线的距离教案

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

4.3点到直线的距离n教学内容教材第55、56页,两点间的距离和点到直线的距离。n教学提示这节课的学习是在学生初步认识了垂直和平行两种特殊的位置关系的基础上进行的,同时又要为进一步学好平行四边形和梯形等重要知识打下坚实的基础。本节课以学生的实际操作和自主探索为主线,通过自主探索,让学生亲身经历研究垂线画法的全过程。通过问题的解决,培养学生仔细观察,勇于探索,大胆实践以及团队合作的意识。n教学目标知识与能力结合具体内容,理解“两点间所有连线中线段最短”,知道两点间的距离与点到直线的距离。过程与方法在对两点间的距离与点到直线的距离的探究过程中,培养学生观察、想象、动手操作的能力,发展空间观念。情感、态度与价值观初步学会交流解决问题和结果,体验数学与生活的密切联系,提高学习的兴趣,学会与他人合作共同解决问题。n教学重点、难点教学重点:认识点到直线的距离,并能解决一些实际问题。教学难点:利用点到直线的距离解决实际问题。n教学准备教师准备:课件,彩色粉笔学生准备:学具盒,学习用品n教学过程(一)新课导入:1.创设情境,提供素材。课件出示情境图,提问:你有什么数学问题?预设:为什么要修隧道?怎样修隧道最近?这里面有什么数学知识?(二)组织活动活动一:到对面红旗处1、看一看:三名学生沿不同白灰线路走到红旗处。2、量一量:量一量三条不同白灰线路的长度。3、说一说:你发现了什么?4、想一想:其中蕴含的数学道理是什么?5、找一找:你能举出生活中应用的例子吗?6、辩一辩:看教材,说说什么是”两点之间的距离“。 活动二:到对面的直跑道1、看一看:三名学生从自己的位置沿不同白灰线路到对边的直跑道。2、量一量:量一量三条不同白灰线路的长度。3、说一说:你发现了什么?4、想一想:其中蕴含的数学道理是什么?5、找一找:你能举出生活中应用的例子吗?6、辩一辩:看教材,想想什么是“点到直线的距离”。活动三:测量双杠的两个横杆之间的距离1、量一量:测量出双杠的两个横杆之间的距离。2、说一说:你有什么发现?活动四:测量掷铅球的成绩,跳远的成绩。㈢讨论交流。各小组回到自己座位上,整理自己的活动记录,准备交流。(四)达标反馈一、填空。1.人们为什么要踩踏草坪?2.小熊、小鹿、小象谁家离水井的距离最近?为什么?【答案】1.两点之间线段距离最短。但是,不能仅仅追求最短的距离而不重视保护环境。花园的设计者也应该同时考虑是否方便群众出行。2.小鹿家。直线外一点到这条直线的垂线段最短。 (五)课堂小结这节课你的收获是什么?哪些方面你对自己很满意?生:我知道了两点之间线段的长度就是两点间的距离。生:我知道从直线外一点到这条直线所花的垂直线段最短,它的长度叫做点到直线的距离。生:在刚才的发言中,我表达非常清楚。 生:在刚才发言时我受到了你的表扬。设计意图:这一环节,是教师和学生一起进行总结的过程,使学生学会总结知识,把所学知识变成自己内在的东西。自己对自己的及时评价,使得孩子们发现自己的优点,培养孩子的自信和对数学学习的兴趣。(六)布置作业答案:略n板书设计距离两点之间的距离:两点间线段的长度点到直线的距离:点到直线的垂直线段的长度平行线之间的距离:平行线间的垂直线段的长度,处处相等。n教学资料包一、选择题。1.两条平行线之间的()最短。A.线段B.直线C.垂线段2.正方形的相邻两边互相()。A.垂直B.平行C.重合3.把()分成180等份,每一份所对的角就是1度。 A.半圆B.一个圆C.正方形4.钟面上3时半的时候时针和分针成(),9时半的时候成(),6时半的时候成(),9时整的时候成(),6时整的时候成()。A.直角B.锐角C.钝角D.平角二、填空题。1.从直线外一点画一条已知直线的垂线,可以画()条。2.两条直线相交成直角时,这两条直线()。3.课桌面相邻的两条边是互相()的。4.两条直线相交能组成()个角。如果相交成直角时,这两条直线()。三、画一画。(1)分别画出50°、90°、145°、180°的角。(2)画一组平行线。(3)以平行线间的距离为边长,在平行线间画一个正方形。参考答案1.C2.A3.A4.BCBAD1.12.互相垂直3.垂直4.4互相垂直三、略。资料链接:隧道隧道指在既有的建筑或土石结构中挖出来的通道,供交通立体化、穿山越岭、地下通道、越江、过海、管道运输、电缆地下化、水利工程等使用。隧道不一定全是地下通道,仅位于地面下称作地下隧道,在台湾有时以地下道称之。隧道是埋置于地层内的工程建筑物,是人类利用地下空间的一种形式。隧道可分为交通隧道,水工隧道,市政隧道,矿山隧道。1970年国际经济合作与发展组织召开的隧道会议综合了各种因素,对隧道所下的定义为:“以某种用途、在地面下作用任何方法规定形状和尺寸修筑的断面积大于2㎡的洞室。” 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭