返回

有理数的乘法(1) 课型:新授课 【教学目标】

首页 > 初中 > 数学 > 有理数的乘法(1) 课型:新授课 【教学目标】

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

有理数的乘法(1)课型:新授课【教学目标】(1)经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法.(2)经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力.(3)培养学生积极探索精神,感受数学与实际生活的联系.【教学重点】应用法则正确地进行有理数乘法运算..【教学难点】两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆.【教学方法】活动式、讲授式。【课前准备】预习新课【教学课时】1课时。课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置? 分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中“2cm”记作“+2cm”,“3分后”记作“+3分”.(1)3分后蜗牛应在L上点O右边6cm处.(如课本图1.4-2)这可以表示为(+2)×(+3)=+6①(2)3分后蜗牛应在L上点O左边6cm处.(如课本图1.4-3)这可以表示为(-2)×(+3)=-6②(3)3分前蜗牛应在L上点O左边6cm处.(如课本图1.4-4)[讲问题(3)时可采用提问式:已知现在蜗牛在点O处,而蜗牛是一直向右爬行的,那么3分前蜗牛应在什么位置?]这可以表示为(+2)×(-3)=-6③(4)蜗牛是向左爬行的,现在在O点,所以3分前蜗牛应在L上点O右边6cm处(如课本图1.4-5).这可以表示为(-2)×(-3)=+6④观察①~④,根据你对有理数乘法的思考,完成课本第39页填空.归纳:两个有理数相乘,积仍然由符号和绝对值两部分组成,①、④式都是同号两数相乘,积为正,②、③式是异号两数相乘,积为负,①~④式中的积的绝对值都是这两个因数绝对值的积.也就是两数相乘,同号得正,异号得负,并把绝对值相乘.此外,我们知道2×0=0,那么(-2)×0=?显然(-2)×0=0. 这就是说:任何数同0相乘,都得0.综上所述,得有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.进行有理数的乘法运算,关键是积的符号的确定,计算时分为两步进行:第一步是确定积的符号,在确定积的符号时要准确运用法则;第二步是求绝对值的积.如:(-5)×(-3),……(同号两数相乘)(-5)×(-3)=+(),……得正5×3=15,……把绝对值相乘所以(-5)×(-3)=15又如:(-7)×4……________(-7)×4=-(),……_________7×4=28,……__________所以(-7)×4=-28例1:计算:(1)(-3)×9;(2)(-)×(-2);(3)0×(-53)×(+25.3);(4)1×(-1).例1可以由学生自己完成,计算时,按判定类型、确定积的符号,求积的绝对值.(3)题直接得0.(4)题化带分数为假分数,以便约分.小学里,两数乘积为1,这两个数叫互为倒数.在有理数中仍然有:乘积是1的两数互为倒数.例如:-与-2是互为倒数,-与-是互为倒数.注意倒数与相反数的区别:两数互为倒数,积为1,它们一定同号;两数互为相反数,和为零,它们是异号(0除外),另外0没有倒数,而0的相反数为0.数a(a≠0)的倒数是什么?1除以一个数(0除外)得这个数的倒数,所以a(a≠0)的倒数为.例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?解:本题是关于有理数的乘法问题,根据题意, (-6)×3=-18由于规定下降为负,所以气温下降18℃.【课堂练习】:课本第30页练习.1.第2题:降5元记为-5元,那么-5×60=-300(元)与按原价销售的60件商品相比,销售额减少了300元.2.第3题:1和-1的倒数分别是它们的本身;,-的倒数分别为3,-3;5,-5的倒数分别为,-;,-的倒数分别是,-;此外,1与-1,与-,5与-5,与-是互为相反数.【课堂小结】:1.强调运用法则进行有理数乘法的步骤.2.比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.【作业布置】1.课本第38页习题1.4第1、2、3题.【板书设计】有理数的乘法(1)两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0【教学反思】: 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭