返回

2021年九年级数学上册第22章一元二次方程达标测试题2(带答案华东师大版)

资料简介

第22章达标测试卷一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是(  )A.9x+2=0B.z2+x=1C.3x2-8=0D.+x2=02.若关于x的一元二次方程8x2-16x-25+a2=0没有常数项,则a的值是(  )A.5B.-5C.±5D.0或23.方程x2-2=0的根为(  )A.x1=x2=2B.x1=x2=C.x1=-2,x2=2D.x1=-,x2=4.已知关于x的方程x2+mx-6=0的一个根为2,则m的值及另一个根是(  )A.1,3B.-1,3C.1,-3D.-1,-35.一个等腰三角形的两条边长分别为方程x2-7x+10=0的两根,则该等腰三角形的周长是(  )A.12B.9C.13D.12或96.某城市2017年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2019年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是(  )A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1-x)2=3007.在等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m的值是(  )A.16B.24C.25D.16或258.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是(  )9.若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且9 a2-ab+b2=18,则+的值是(  )A.3B.-3C.5D.-510.如图,某小区规划在一个长为40m,宽为26m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪,若使每块草坪(阴影部分)的面积都为144m2,则路的宽为(  )A.3mB.4mC.2mD.5m二、填空题(每题3分,共30分)11.把方程(2x+1)(x-2)=5-3x整理成一般形式后,得______________.12.方程x2-2x-3=0的解为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2022的值为________.14.若关于x的一元二次方程(a-1)x2-x+1=0有实数根,则a的取值范围是____________.15.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x21+x22=4,则m的值为____________.16.对于任意实数a,b,定义:a*b=a(a+b)+b,已知a*2.5=28.5,则实数a的值是__________.17.若x,y满足(x2+y2+2)(x2+y2-2)=0,则x2+y2的值为________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是________三角形.19.若x2-3x+1=0,则的值为________.20.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.用适当的方法解下列方程:(1)x2-2x=5;           (2)(7x+3)2=2(7x+3);9 (3)x2-x-=0;(4)(y+1)(y-1)=2y-1.22.已知关于x的一元二次方程x2-(2m-1)x+3=0.(1)当m=2时,判断方程根的情况;(2)当m=-2时,求出方程的根.23.已知关于x的方程(k-2)xk2-2+3x-5=0是一元二次方程,求直线y=kx-k与两坐标轴围成的三角形的面积.9 24.已知关于x的一元二次方程x2-(2m-2)x+(m2-2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且=10,求m的值.9 25.手机下载一个软件,缴纳一定数额的押金,就能以每小时0.5元到1元的价格解锁一辆自行车任意骑行.最近的网红非“共享单车”莫属.共享单车为解决市民出行的“最后一千米”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁等毁坏单车的行为也层出不穷.某共享单车公司一月份投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率达到20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为引起了一场国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.9 26.如图,已知A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10cm?9 答案一、1.C 2.C 3.D 4.C 5.A6.B 7.D 8.B 9.D 10.C 二、11.2x2-7=0 12.x1=3,x2=-113.1 点拨:将x=1代入方程x2+ax+b=0,得1+a+b=0,∴a+b=-1,∴(a+b)2022=1.14.a≤且a≠1点拨:∵一元二次方程(a-1)x2-x+1=0有实数根,∴a-1≠0,即a≠1,且Δ≥0,即(-1)2-4(a-1)=5-4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.15.-1或-3 16.-或4 17.2 18.直角19. 点拨:由x2-3x+1=0得x2=3x-1,则======.20.74三、21.解:(1)配方,得x2-2x+1=6.即(x-1)2=6.由此可得x-1=±.∴x1=1+,x2=1-.(2)原方程变形为(7x+3)2-2(7x+3)=0.因式分解,得(7x+3)(7x+3-2)=0.∴x1=-,x2=-.(3)∵a=1,b=-,c=-.∴Δ=b2-4ac=(-)2-4×1×=12.∴x==.∴x1=,x2=-.(4)原方程化为一般形式为y2-2y=0.分解因式,得y(y-2)=0.9 ∴y1=2,y2=0.22.解:(1)当m=2时,方程为x2-3x+3=0,Δ=(-3)2-4×1×3=-3<0,∴此方程没有实数根.(2)当m=-2时,方程为x2+5x+3=0,Δ=25-12=13,∴x=,故方程的根为x1=,x2=.23.解:∵(k-2)x+3x-5=0是关于x的一元二次方程,∴解得k=-2.∴直线对应的函数表达式为y=-2x+2.把x=0代入直线对应的函数表达式,得y=2;把y=0代入直线对应的函数表达式,得x=1.∴直线y=-2x+2与两坐标轴的交点坐标分别为(1,0),(0,2),∴直线与两坐标轴围成的三角形的两直角边的长分别为1和2.∴所求面积为×1×2=1.24.(1)证明:∵Δ=[-(2m-2)]2-4(m2-2m)=4>0,∴该方程有两个不相等的实数根.(2)解:由一元二次方程根与系数的关系,得x1+x2=2m-2,x1·x2=m2-2m.∵∴(x1+x2)2-2x1x2=10,即(2m-2)2-2(m2-2m)=10,化简,得m2-2m-3=0,解得m1=3,m2=-1,故m的值为3或-1.25.解:(1)设一月份该公司投入市场的自行车有x辆,根据题意,得x-(7500-1200)≥10%x,解得x≥7000.答:一月份该公司投入市场的自行车至少有7000辆.9 (2)根据题意,得[7500×(1-20%)+1200(1+4a%)](1-a%)=7752.整理,得a2-250a+4600=0,解得a1=230,a2=20.因为a%<20%,所以a<80,所以a=20.答:a的值是20.26.解:(1)设P,Q两点出发xs后,四边形PBCQ的面积是33cm2,则由题意得(16-3x+2x)×6×=33,解得x=5.即P,Q两点出发5s后,四边形PBCQ的面积是33cm2.(2)设P,Q两点出发ts后,点P与点Q之间的距离是10cm,过点Q作QH⊥AB于点H.在Rt△PQH中,有(16-5t)2+62=102,解得t1=1.6,t2=4.8.即P,Q两点出发1.6s或4.8s后,点P与点Q之间的距离是10cm.9 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭