返回

2021年九年级数学上册第24章解直角三角形达标检测题(带答案华东师大版)

资料简介

第24章达标检测卷一、选择题(每题3分,共30分)1.cos30°的值等于(  )A.B.C.1D.2.在Rt△ABC中,∠C=90°,AB=10,AC=8,则tanA等于(  )A.B.C.D.3.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ACB的值为(  )A.3B.C.1D.4.如图,在四边形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=,BC=10,则AB的长是(  )A.3B.6C.8D.95.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上.有四名同学分别测量出以下4组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B两点之间距离的有(  )A.1组 B.2组 C.3组 D.4组12 6.如图,在Rt△ACB中,∠ACB=90°,CD⊥AB,垂足为D,若AB=c,∠A=α(α≠45°),则CD的长为(  )A.c·sin2αB.c·cos2αC.c·sinα·tanαD.c·sinα·cosα7.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则tanC等于(  )A.B.C.D.8.如图所示,某电视塔高AB为600米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°,则大楼的高度CD约为(  )(结果精确到1米,参考数据:tan39°≈0.8098)A.110米B.114米C.118米D.201米9.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为(  )A.30°B.150°C.60°或120°D.30°或150°12 10.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为(  )A.20海里B.10海里C.20海里D.30海里二、填空题(每题3分,共30分)11.在△ABC中,∠C=90°,∠A=30°,若AB=8,则BC=________.12.计算:sin245°+cos30°·tan60°=________.13.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=6.5,BC=5,则AC的长是________.14.某地铁站的手扶电梯的示意图如图所示.其中AB,CD分别表示电梯出入口处的水平线,∠ABC=135°,BC的长是5m,则乘电梯从点B到点C上升的高度h是________m.12 15.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC所在的直线对称,若DM=1,则tan∠ADN=________.16.设x为锐角,且sinx=3k-9,则k的取值范围是________.17.如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=________.18.如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连结A′B,则tan∠A′BC′=________.19.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′=________.20.一次函数的图象经过点(tan45°,tan60°)和(-cos60°,-6tan30°),则此一次函数的表达式为________.12 三、解答题(21题6分,22,25题每题8分,23,24题每题12分,26题14分,共60分)21.计算:(1)(2cos45°-sin60°)+;(2)sin60°·cos60°-tan30°·tan60°+sin245°+cos245°.22.在△ABC中,(sinA-1)2+=0.(1)试判断△ABC的形状,并说明理由;(2)若AB=10,求BC的长.12 23.如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.24.已知:如图,在△ABC中,AD⊥BC,D点为垂足,BE⊥AC,E点为垂足,M点为AB边的中点,连结ME,MD,ED.求证:(1)△MED与△BMD都是等腰三角形;(2)∠EMD=2∠DAC.12 25.春汛来临之前,某防洪指挥部对长江防线的情况进行排查.发现长江边一处长500m、高10m、背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD,如图)急需加固,经调查论证,防洪指挥部专家组制订的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3m,加固后背水坡EF的坡比i=1:.求加固后坝底增加的宽度AF.(结果保留根号)26.如图①为学校运动会终点计时台的侧面示意图,AB∥CD,AB=1m,DE=5m,BC⊥DC于点C,∠ADC=30°,∠BEC=60°.(1)求AD的长;(2)如图②,为了避免计时台AB和AD的位置受到与水平面成45°角的光线的照射,计时台上方应放置直径是多少米的遮阳伞(即求DG的长度)?12 答案一、1.B 2.C 3.A 4.B 【点拨】因为AD=DC,所以∠DAC=∠DCA.因为AD∥BC,所以∠DAC=∠ACB.所以∠DCA=∠ACB.在Rt△ACB中,AC=BC·cos∠BCA=10×=8,则AB==6.5.C 【点拨】对于①,可由AB=BC·tan∠ACB求出A,B两点间的距离;对于②,由BC=,BD=,BD-BC=CD,可求出AB的长;对于③,易知△DEF∽△DBA,则=,可求出AB的长;对于④,无法求得AB的长,故有①②③共3组,故选C.6.D7.B 【点拨】如图,连结BD,由三角形中位线定理得BD=2EF=2×2=4. 又BC=5,CD=3,∴CD2+BD2=BC2.∴△BDC是直角三角形,且∠BDC=90°.∴tanC==.8.B9.D 【点拨】有两种情况.当顶角为锐角时,如图①,sinA=,∴∠A=30°;当顶角为钝角时,如图②,∵sin(180°-∠BAC)=,∴180°-∠BAC=30°.12 ∴∠BAC=150°.综上,等腰三角形顶角的度数为30°或150°.10.C二、11.4 12.2 13.12 14.515.16.3<k< 【点拨】因为x为锐角,sinx=3k-9,所以0<3k-9<1,解得3<k<.17.2-18. 【点拨】如图,过A′作A′D⊥BC′于点D,设A′D=x,易得B′D=x,BC=2x,所以BD=3x.所以tan∠A′BC′===.19. 【点拨】由题意知BD′=BD=2.在Rt△ABD′中,tan∠BAD′===.20.y=2x- 【点拨】tan45°=1,tan60°=,-cos60°=-,-6tan30°=-2.设此一次函数的表达式为y=kx+b,将(1,),代入,得解得三、21.解:(1)原式=×+=2-+=2.(2)原式=×-×++=-1++=.22.解:(1)△ABC是等腰直角三角形.理由:∵(sinA-1)2+=0,12 ∴∴∴∠A=∠B=45°,∴AC=BC,∠C=90°,∴△ABC是等腰直角三角形.(2)∵在△ABC中,∠C=90°,∴sinA==,∴BC=10×=5.23.解:(1)过A作AE⊥BC于点E,如图,在Rt△ABE中,tan∠ABC==,AB=5,∴易知AE=3,BE=4,∴CE=BC-BE=5-4=1.在Rt△AEC中,根据勾股定理得AC==.(2)如图,设BC的垂直平分线交BC于点F,连结CD.∵DF垂直平分BC,∴BD=CD,BF=CF=.∵tan∠DBF==,∴DF=.在Rt△BFD中,根据勾股定理得12 BD==,∴AD=5-=,∴=.24.证明:(1)∵M点为AB边的中点,AD⊥BC,BE⊥AC,∴MD=BM=AB,ME=AB.∴△BMD是等腰三角形,ME=MD,∴△MED为等腰三角形.(2)由(1)知ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=∠MAE+∠MEA=2∠MAE.易得MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=∠MAD+∠MDA=2∠MAD,∴∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC.25.解:分别过点E,D作EG⊥AB,DH⊥AB,垂足分别为点G,H.由题意可知,EG=DH=10m,GH=ED=3m.在Rt△ADH中,AH===10(m).在Rt△FGE中,tan∠EFG==,所以FG=EG=10m,所以AF=FG+GH-AH=10+3-10=10-7(m),故加固后坝底增加的宽度AF为(10-7)m.26.解:(1)过点B作BF∥AD,交DC于点F,∴∠BFE=∠D=30°.∵AB∥DF,∴四边形ABFD为平行四边形,12 ∴DF=AB=1m,AD=BF,∴EF=DE-DF=4m.在Rt△BCF中,设BC=xm,则BF=2xm,CF=xm.在Rt△BCE中,∠BEC=60°,∴CE=m,∴x-=4,解得x=2,∴BC=2m,∴AD=BF=4m.(2)由题意知,∠BGE=45°.∴在Rt△BCG中,CG=BC=2m,∵EC=×2=2(m),∴GE=GC-EC=(2-2)m,∴DG=DE-GE=(7-2)m,即应放置直径是(7-2)m的遮阳伞.12 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭