返回

2021年九年级数学上册第4章相似三角形达标测试题(有答案浙教版)

首页 > 初中 > 数学 > 2021年九年级数学上册第4章相似三角形达标测试题(有答案浙教版)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

第4章达标测试卷一、选择题(每题3分,共30分)1.若=,则等于(  )A.B.C.D.2.若两个相似多边形的面积之比为1:4,则它们的周长之比为(  )A.1:4B.1:2C.2:1D.4:13.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A,B,C和点D,E,F.若AB=3,DE=2,BC=6,则EF=(  )A.2B.3C.4D.54.已知△ABC∽△A′B′C′,AB=8,A′B′=6,则=(  )A.2B.C.3D.5.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是(  )A.△ABC∽△A′B′C′B.点C、点O、点C′在同一直线上C.AO:AA′=1:2D.AB∥A′B′6.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于(  )A.60mB.40mC.30mD.20m7.如图,小正方形的边长均为1,则下列选项中的三角形与△ABC相似的是(  )12  8.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF等于(  )A.2B.2.4C.2.5D.2.259.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为(  )A.1B.2C.12-6D.6-610.如图,在钝角三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC的中点D,AC的中点N,连结DN,DE,DF.下列结论:①EM=DN;②S△CND=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确结论的个数为(  )A.1B.2C.3D.4二、填空题(每题3分,共24分)11.已知=,则=________.12.如图,在△ABC中,若DE∥BC,AD=2,BD=4,DE=1.5,则BC的长为__________.13.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形的面积,S2表示长为AD(AD=AB)、宽为AC的矩形的面积,则S1与S2的大小关系为________.14.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,位似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为________.12 15.如图,在△ABC中,∠BAC=90°,∠B=45°,在△ACD中,∠ACD=90°,∠D=30°,则的值是________.16.如图,身高为1.7m的小明AB站在河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A,E,C′在一条直线上.已知河BD的宽度为12m,BE=3m,则树CD的高度为________.17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM的长为________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则Sn=____________.(用含n的式子表示)三、解答题(19,21题每题8分,24题14分,其余每题12分,共66分)19.如图,四边形ABCD∽四边形EFGH,试求出x及α的大小.12 20.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比.(不写解答过程,直接写出结果)21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;12 (2)若GB=2,BC=4,BD=1,求AB的长.22.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两个景观灯的间隔都是10m,在与河岸DE的距离为16m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的这两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.23.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动.如果E,F同时出发,用t(0≤t≤6)秒表示运动的时间.请解答下列问题:12 (1)当t为何值时,△CEF是等腰直角三角形?(2)当t为何值时,以点E,C,F为顶点的三角形与△ACD相似?24.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连结DF.(1)求证:△ADE≌△DCF.(2)若E是CD的中点,求证:Q为CF的中点.(3)连结AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.12 答案一、1.D 2.B 3.C 4.B 5.C6.B 点拨:∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCE=90°.又∵∠AEB=∠DEC,∴△ABE∽△DCE.∴=,即=.∴AB=40m.7.A 8.B9.D 点拨:如图,过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC.又∵∠BAC=∠DAG,∴△ADG∽△ABC.∴∠ADG=∠B.∴DG∥BC.∴AN⊥DG.∵四边形DEFG是正方形,∴FG⊥DG.∴FH⊥BC.∵AB=AC=18,BC=12,∴BM=BC=6.∴AM==12.∵=,即=,∴AN=6.∴MN=AM-AN=6.易得四边形GHMN为矩形,∴GH=MN=6.∴FH=GH-GF=6-6.故选D.10.D 点拨:∵△ABE是等腰直角三角形,EM平分∠AEB,∴EM是AB边上的中线.∴EM=AB.∵点D,点N分别是BC,AC的中点,12 ∴DN是△ABC的中位线.∴DN=AB,DN∥AB.∴EM=DN.①正确.∵DN∥AB,∴△CDN∽△CBA.∴==.∴S△CND=S四边形ABDN.②正确.如图,连结DM,FN,则DM是△ABC的中位线,∴DM=AC,DM∥AC.∴四边形AMDN是平行四边形.∴∠AMD=∠AND.易知∠ANF=90°,∠AME=90°,∴∠EMD=∠DNF.∵FN是AC边上的中线,∴FN=AC.∴DM=FN.又∵EM=DN,∴△DEM≌△FDN.∴DE=DF,∠FDN=∠DEM.③正确.∵∠MDN+∠AMD=180°,∴∠EDF=∠MDN-(∠EDM+∠FDN)=180°-∠AMD-(∠EDM+∠DEM)=180°-(∠AMD+∠EDM+∠DEM)=180°-(180°-∠AME)=180°-(180°-90°)=90°.∴DE⊥DF.④正确.故选D.二、11. 点拨:∵=,∴设a=13x,b=7x,则==.12.4.5 13.S1=S2 14.(2,1)15. 16.5.1m 17.或312 18.× 点拨:在正三角形ABC中,AB1⊥BC,∴BB1=BC=1.在Rt△ABB1中,AB1===,根据题意可得△AB2B1∽△AB1B,记△AB1B的面积为S,∴=.∴S1=S.同理可得S2=S1,S3=S2,S4=S3,….又∵S=×1×=,∴S1=S=×,S2=S1=×,S3=S2=×,S4=S3=×,…,Sn=×.三、19.解:因为四边形ABCD∽四边形EFGH,所以∠H=∠D=95°,则α=360°-95°-118°-67°=80°.再由x∶7=12∶6,解得x=14.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)S△A1B1C1∶S△A2B2C2=1∶4.21.(1)证明:∵AB∥FC,∴∠A=∠ECF.12 又∵∠AED=∠CEF,且DE=FE,∴△ADE≌△CFE.(2)解:方法一:∵AB∥FC,∴△GBD∽△GCF.∴=.∴=.∴CF=3.由(1)得△ADE≌△CFE,∴AD=CF=3,∴AB=AD+BD=3+1=4.方法二:如图,取BC的中点H,连结EH.∵△ADE≌△CFE,∴AE=CE.∴EH是△ABC的中位线.∴EH∥AB,且EH=AB.∴△GBD∽△GHE.∴=.∴=.∴EH=2.∴AB=2EH=4.22.解:由题意可得DE∥BC,所以△ADE∽△ABC.所以=,即=.因为AD=16m,BC=50m,DE=20m,所以=.所以DB=24m.所以这条河的宽度为24m.23.解:(1)由题意可知BE=2t,CF=4t,CE=12-2t.因为△CEF是等腰直角三角形,∠ECF是直角,所以CE=CF.所以12-2t=4t,解得t=2.所以当t=2时,△CEF是等腰直角三角形.12 (2)根据题意,可分为两种情况:①若△EFC∽△ACD,则=,所以=,解得t=3,即当t=3时,△EFC∽△ACD.②若△FEC∽△ACD,则=,所以=,解得t=1.2,即当t=1.2时,△FEC∽△ACD.因此,当t为3或1.2时,以点E,C,F为顶点的三角形与△ACD相似.24.(1)证明:因为AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF. (2)证明:因为四边形AEHG是正方形,所以∠AEH=90°.所以∠QEC+∠AED=90°.又因为∠AED+∠EAD=90°,所以∠QEC=∠EAD.因为∠C=∠ADE=90°,所以△ECQ∽△ADE.所以=.因为E是CD的中点,所以EC=DE=CD=AD.所以=.因为DE=CF,所以==.即Q是CF的中点.(3)解:S1+S2=S3成立.理由如下:因为△ECQ∽△ADE,所以=.所以=.因为∠C=∠AEQ=90°,所以△ECQ∽△AEQ.所以△AEQ∽△ECQ∽△ADE.所以=,=.12 所以+=+=.在Rt△AEQ中,由勾股定理,得EQ2+AE2=AQ2,所以+=1,即S1+S2=S3.12 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭