资料简介
练习四。(教材59~60页)1.引导学生进一步熟练运用加法交换律和结合律,乘法交换律、结合律和分配律进行简便运算。2.能用乘法解决实际问题。3.使学生能联系现实问题,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的喜悦感和成功感,增强学生学习的自信心。重点:灵活运用运算律进行简便运算。难点:用运算律解决实际问题。课件。1.回顾乘法交换律、乘法结合律和乘法分配律的适用范围及作用:乘法交换律:用于连乘算式,调换各乘数在连乘算式中的位置;乘法结合律:用于连乘算式,改变连乘算式中各乘数的运算顺序;乘法分配律:用于两个数的和与第三个数相乘的算式;或者用于两个数相乘加上两个数相乘,其中相乘的每一部分都有一个相同的乘数的算式。可改变运算的方法,但结果不变。2.说一说:运用乘法的三个运算定律和加法的两个运算定律,使计算简便的判断依据是什
么?(能否在计算过程中“凑整”)【设计意图:回顾总结全章所学知识,结合课后练习,进一步得到巩固。】1.简便计算练习。(教材第59页“练习四”第3题)(1)分析判断每一题的算式特点、可用的运算定律、能否“凑整”。85×82+82×15(两个数相乘的积加上两个数相乘的积,有相同乘数82,可用乘法分配律,余下加数85与15的和凑整。)(125+17)×8(两个数的和与第三个数相乘,可用乘法分配律,125与8的积凑整。)167+289+33(连加算式,可用加法交换律,167与33的和凑整。)5×289×2(连乘算式,可用乘法交换律,5与2的积凑整。)25×97+25×3(两个数相乘的积加上两个数相乘的积,有相同乘数25,可用乘法分配律,余下加数97与3的和凑整。)58+39+42+61(连加算式,可用加法交换律与结合律,58与42的和、39与61的和分别凑整。)(125×25)×4(连乘算式,可用乘法结合律,25与4的积凑整。)378+527+73(连加算式,可用加法结合律,527与73的和凑整。)76×25+25×24(两个数相乘的积加上两个数相乘的积,有相同乘数25,可用乘法分配律,余下加数76与24的和凑整。)2.应用练习。(1)教材第59页“练习四”第4题。一个花圃的长是30米,宽是25米。这个花圃的篱笆长多少米?如果每平方米大约种40棵郁金香,这个花圃大约种了多少棵郁金香?让学生独立完成,重点理解列式的算理,即第1个问题为什么是计算周长,第2
个问题为什么是计算面积,体会周长与面积的不同含义。(2)教材第59页“练习四”第1题。用了多少块地砖?每块地砖12元,准备了1800元够不够?(3)教材第60页“练习四”第5题。分析判断各个算式的特点(分析实际上是几个几),根据分析结果进行连线练习。(4)教材第60页“练习四”第6题。计算:1时行12千米,2时行多少千米?4时和6时各行多少千米呢?分析:观察各个算式间的变化特点,及相对应的得数的变化特点,找出其中的规律。小结:两个数相乘,一个乘数不变,另一个乘数扩大几倍,积也随着扩大几倍;另一个乘数缩小几分之一,积也随着缩小几分之一。应用:利用发现的规律,直接写出得数。150×20=3000 150×40= 150×60=360×4=1440 360×12= 360×6=3.拓展提升。教材第60页“练习四”第7题中的第(1)题。5×10-5×3=5×(10-3)成立吗?想办法验证你的想法。学生交流。汇报:10个5减3个5,得到(10-3)个5,也就是7个5。 5×10-5×3=(10-3)×5=7×5=35变式练习:206×14-6×14 72×99【设计意图:结合个别题型,充分调动学生积极参与,有效地抓住学生的注意力,提高课堂效率。】
谁能说说,通过本节课的练习,你有什么新的收获?【设计意图:梳理所学知识,将所学知识系统化,进一步深化在脑海中的印象。】运 算 律加法交换律、乘法交换律、加法结合律、乘法结合律、乘法分配A类1.在方框内填出合适的数。(1)(45+36)+64=45+(36+ ) (2)(72+20)+ =(72+8)+20(3)560+(140+70)=(560+ )+ (4)(149+62)+ =(149+ )+ (考查知识点:运算律的运用;能力要求:能综合运用运算律,进行简便计算。)B类2.根据运算律的性质,用字母表示各运算律。(1)加法交换律: (2)加法结合律: (3)乘法交换律: (4)乘法结合律: (5)乘法分配律: (6)减法性质: (考查知识点:运算律的性质特征;能力要求:牢记各运算的公式,能熟练运用到计算中去。)课堂作业新设计
A类:1.(1)64 (2)8 (3)140 70 (4)51 51(答案不唯一) 62B类:2.(1)a+b=b+a (2)a+b+c=a+(b+c) (3)a×b=b×a (4)a×b×c=a×(b×c)(5)a×(b+c)=a×b+a×c (6)a-b-c=a-(b+c)教材第59页“练习四”1.16×9+8×3=168(块) 168×12=2016(元) 2016元>1800元 不够。2.左边运用了乘法的结合律,右边运用了乘法的分配律。3.8200 2890 12500 1136 2500 978 489 200 25004.(1)(30+25)×2=110(米) (2)30×25×40=30000(棵)5.略6.(1)2×12=24(千米) 4×12=48(千米) 6×12=72(千米)变化规律:当一个乘数一定时,另一个乘数变为原来的多少倍,积就为原来的多少倍。(2)6000 9000 4320 21607.(1)成立。验证略。 (2)能。(3) 206×14-6×14 72×99 =(206-6)×14=72×(100-1) =200×14=72×100-72 =2800=7128
查看更多