资料简介
函数及其表示一、函数的概念小明从出生开始,每年过生日的时候都会测量一下自己的身高,其测量数据如下:1234567891030405060708090100110120年龄(岁)身高(cm)从以上两个例子,我们可以把年龄当做一个集合A,身高当做一个集合B;把时间当做一个集合C,把下降高度当做一个集D。那么对于集合A、C中的每一个元素,集合B、D中都有唯一的一个元素与其相对应。比如,对于A的每一个元素“乘以10再加20”,就得到了集合B中的元素。对于集合C中的元素“平方后乘以4.9”就得到集合D中的元素。函数及其表示,因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如下:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值(因变量),函数值的集合{f(x)|x∈A}叫做函数的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20”和“平方后乘以4.9”1234567830405060708090100乘以10再加2011.52356784.9???????平方后乘以4.9,二、映射通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的集合,则这种对应关系就称为映射。具体定义如下:设A、B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之相对应,那么就称对应f:A→B为集合A到集合B的一个映射。国家首都中国美国韩国日本北京华盛顿首尔东京因此,函数是映射的一种特殊形式,三、函数的三种表示方法解析法,图像法,列表法。详见课本P19页。四、开区间、闭区间和半开半闭区间实数R的区间可以表示为(-∞,+∞),★深入理解函数表示方法的解析法,五、着重强调的几个问题及考试陷阱1、函数是高中数学乃至大学数学中最为重要的组成部分,大部分的章节都会与函数进行穿插出题。2、不管是映射还是函数,都是唯一确定的对应,即对于A中的元素有且仅有一个B中的元素与其相对应。深入的理解这句话就可以得到:可以多对一,而不能一对多。1-12-214平方49-23开方2-3√×,3、分母不能等于零,二次根号下不能为负数,分子分母的未知数不能随便约,根号不能随便去掉,都是求定义域的典型考点。详见课本例题。4、判定两个函数相同的条件:一是对应法则相同,二是定义域和值域相同。,2、下列几种说法中,不正确的有:______________A、在函数值域中的每一个数,在定义域中都至少有一个数与之对应;B、函数的定义域和值域一定是无限集合;C、定义域和对应关系确定后,函数的值域也就确定;D、若函数的定义域只含有一个元素,则值域也只含有一个元素。E、若函数的值域只含有一个元素,则定义域也只含有一个元素。练习题,4、求下列函数的值域5、判断下列各组函数是否表示同一函数?,,函数的基本性质——单调性那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增函数,I称为f(x)的单调增区间.当x1<x2时,都有f(x1)<f(x2),当x1<x2时,都有f(x1)f(x2),>单调区间Oxyx1x2f(x1)f(x2),二、函数单调性考察的主要问题3、证明一个函数具有单调性的证明方法:从定义出发,设定任意的两个x1和x2,且x2>x1,通过计算f(x2)—f(x1)>0或者<0恒成立。里面通常都是用因式分解的办法,把f(x2)—f(x1)转化成(x2-x1)的表达式。最后判断f(x2)—f(x1)是大于0还是小于0。2、x1,x2取值的任意性.xx1x2Iyf(x1)f(x2)OMN,例1、下图为函数y=f(x),x∈[-4,7]的图像,指出它的单调区间。[-1.5,3],[5,6][-4,-1.5],[3,5],[6,7]解:单调增区间为单调减区间为123-2-3-2-11234567xo-4-1y-1.5,例2.画出下列函数图像,并写出单调区间:数缺形时少直观xy_____________,讨论1:根据函数单调性的定义,讨论2:在(-∞,0)和(0,+∞)上的单调性?,例3.判断函数在定义域[1,+∞)上的单调性,并给出证明:1.任取x1,x2∈D,且x1</x2时,都有f(x1)<f(x2),当x1<x2时,都有f(x1)f(x2),>
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。