返回

广东省深圳市中考二模数学试题及答案

首页 > 中考 > 模拟考试 > 广东省深圳市中考二模数学试题及答案

广东省深圳市中考二模数学试题及答案

  • 2023-09-23 23:06:01
  • 13页
  • 644.82 KB
点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

中考二模数学试题一、单选题1.-2022的相反数是()A.-2022B.2022C.D.第七次人口普查结果显示,光明区常住人口达到109万,成为深圳市最具人口活力的区域之一,其中109万用科学记数法表示为()A.1.09×102B.1.09×106C.10.9×102D.10.9×105观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算中,正确的是()A.a8÷a2=a4B.(a3)4=a12C.(﹣3a)2=a6D.3a2•a3=3a65.学校课后延时服务项目为同学们提供了丰富多彩的课程,欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加,则恰好选到艺术体操社团的概率为()A.1B.C.D.下列命题中,是真命题的是()A.三角形的外心是三角形三个内角的角平分线的交点B.过一点有且只有一条直线与已知直线平行C.连接对角线相等的四边形各边中点所得四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形如图,在△AOB中,∠B=30°,将△AOB绕点O逆时针旋转55°得到△MON,MN与OB交于点G,则∠BGN的度数为()A.55°B.75°C.85°D.95°8.如图,在Rt△ABC中,∠C=90°,AC=5,⊙O是△ABC的内切圆,半径为2,则图中阴影部分n的面积为()A.30﹣4πB.C.60﹣16πD.9.在边长为1的正方形网格中,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOD的正弦值为()A.B.C.D.10.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(m,0),B(n,0)两点,已知m+n=4,且﹣4≤m≤﹣2.图象与y轴的正半轴交点在(0,3)与(0,4)之间(含端点).给出以下结论:①6≤n≤8;②对称轴是直线x=2;③当时,抛物线的开口最大;④二次函数的最大值可取到6.其中正确结论的个数为()个A.1二、填空题B.2C.3D.411.分解因式:4a2﹣16=.12.一组数据:5,6,5,3,7的中位数是.n13.估算在日常生活和数学学习中有着广泛的应用,例如估算数.于是的整数部分是1,小数部分是.现记b,计算(a﹣b)(b+9)的结果为.,容易发现,即的整数部分是a,小数部分是14.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数的图象在第一象限内交于点B,过点B作BA⊥x轴,BC⊥y轴.垂足分别为点A,C.当矩形OABC与△OMN的面积相等时,点B的坐标为.15.如图,在矩形ABCD中,E为AD上的一点,且BE=BC=10,作∠EBC的平分线交CD于点G,CG=5,F为BC上的一点,H为CG上的一点,且EF⊥BH,给出以下结论,其中正确的结论有.(将你认为正确结论的序号都填上)①GE=GC;②△ABE的面积为24;③EF:BH=3:4;④连接FH,则FH的最小值为.三、解答题16.计算:.17.先化简,再求值:,其中﹣2<x<2且x为整数.18.4月23日是世界读书日,某学校为增进同学们对中国古诗词的热爱,举行“春季校园飞花令”专场比赛.在预选赛后,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:n请将条形统计图补充完整;在扇形统计图中,“三等奖”所对应的扇形圆心角的度数为;若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好都来自九年级的概率.19.如图,AB是⊙O的直径,N是⊙O上一点,M是的中点,连接AN,BM,交于点D.连接NM,OM,延长OM至点C,并使∠CAN=2∠N.AN与OC交于点E.求证:AC是⊙O的切线;若DM=10,,求⊙O的半径.20.九(1)班同学在社会实践调研活动中发现,某服装店销售A,B两种款式的衬衫,进价和售价如表所示:项目进价(元/件)售价(元/件)A100120B150200已知该服装店购进A,B两种款式的衬衫共花费6000元,销售完成后共获得利润1600元.(1)服装店购进A,B两种款式的衬衫各多少件?n(2)若服装店再次购进A,B两种款式的衬衫共30件,其中B款式的数量不多于A款式数量的2倍,且两种衬衫总利润不低于1140元.问共有几种购进方案?请写出利润最大的购进方案.21.如图(1)【问题提出】如图(1),每一个图形中的小圆圈都按一定的规律排列,设每条边上的小圆圈个数为a,每个图形中小圆圈的总数为S.请观察思考并完成以下表格的填写:a12345…8…S136……【变式探究】请运用你在图(1)中获得的经验,结合图(2)中小圆圈的排列规律,写出第n个图形的小圆圈总数S与n之间的关系式.【应用拓展】生物学家在研究时发现,某种细胞的分裂规律可用图(3)的模型来描述,请写出经过n轮分裂后细胞总数W与n的关系式.并计算经过若干轮分裂后,细胞总数能否达到1261个,若能,求出n的值;若不能,说明理由.22.如图n如图(1),在Rt△ABC中,∠C=90°,边AC=8,BC=6,点M、N分别在线段AC、BC上,将△ABC沿直线MN翻折,点C的对应点是C′.当M、N分别是所在边的中点时,求线段CC′的长度;若CN=2,求点C′到线段AB的最短距离;如图(2),当点C′落在边AB上时,①四边形CMC′N能否成为正方形?若能,求出CM的值;若不能,说明理由.②请直接写出点C′运动的路程长度.n答案解析部分【答案】B【答案】B【答案】D【答案】B【答案】D【答案】D【答案】C【答案】A【答案】D【答案】C11.【答案】4(a+2)(a﹣2)【答案】5【答案】21【答案】【答案】①②④【答案】解:原式.17.【答案】解:原式,,,又且为整数,,n将代入得:原式.18.【答案】(1)解:参赛同学的总人数为获得二等奖的人数为(人),获得一等奖的人数为(人).则将条形统计图补充完整如下:(人),(2)(3)解:一等奖的同学中来自七年级的人数为一等奖的同学中来自九年级的人数为(人),(人),一等奖的同学中来自八年级的人数为(人),将一等奖的同学中来自七年级的一名同学记为,来自八年级的一名同学记为名同学分别记为,画树状图如下:,来自九年级的两由图可知,从获得一等奖的同学中任选两名同学参加全市诗词大会比赛共有12种等可能的结果,其中,所选两名同学中,恰好都来自九年级的结果有2种,则所选两名同学中,恰好都来自九年级的概率为,答:所选两名同学中,恰好都来自九年级的概率为.n19.【答案】(1)证明:如图,连接,是的中点,,,,,,由圆周角定理得:,,即,,又是的直径,是的切线.(2)解:如图,连接,由(1)已得:,,在中,,解得,又由(1)已得:,n,在中,,解得,,则的半径为20.【答案】(1)解:设服装店购进.种款式的衬衫件,购进种款式的衬衫件,由题意得:,解得,答:服装店购进种款式的衬衫30件,购进种款式的衬衫20件.(2)解:设服装店购进种款式的衬衫件,则购进种款式的衬衫件,由题意得:,解得,因为为正整数,所以当的所有可能取值为时,总利润为,(元),当时,总利润为(元),当时,总利润为(元),答:共有3种购进方案,利润最大的购进方案是购进种款式的衬衫10件,购进种款式的衬衫20件.21.【答案】(1)解:由图可知,第1个图形中每条边上的小圆圈个数为1,小圆圈的总数为,第2个图形中每条边上的小圆圈个数为2,小圆圈的总数为,第3个图形中每条边上的小圆圈个数为3,小圆圈的总数为,n第4个图形中每条边上的小圆圈个数为4,小圆圈的总数为归纳类推得:第个图形中每条边上的小圆圈个数为,小圆圈的总数为则当时,,当时,,将表格填写如下:,,12345…8…1361015…36…(2)S=3n(n+1)(3)解:由图可知,经过1轮分裂后细胞总数为,经过2轮分裂后细胞总数为,经过3轮分裂后细胞总数为,经过4轮分裂后细胞总数为,归纳类推得:经过轮分裂后细胞总数为假设经过若干轮分裂后,细胞总数能达到1261个,,则解得或所以假设成立,,(不符题意,舍去),所以经过若干轮分裂后,细胞总数能达到1261个,此时22.【答案】(1)解:如图(1),记与交于点..∵AC=8,BC=6,M、N分别是所在边的中点,∴在中,,n∵,∴∴;,在以点为圆心,2为半径的圆(在(2)解:如图(2),点过点作于点,内的部分)上.∵∠B=∠B.∠NDB=∠CAB,∴,∴,∴,∴点到线段(3)解:①当点的最短距离为:在边上时,四边形可以成为正方形,理由如下:不妨假设四边形可以成为正方形,如图(3),设,则易知MC’∥BC,,,∴,n∴,∴,解得,∴四边形可以成为正方形,此时;②4 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭