资料简介
2022中考数学压轴题几何与函数问题精选解析(一)例1已知,,(如图).是射线上的动点(点与点不重合),是线段的中点.(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;BADMECBADC备用图(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长.【思路点拨】(1)取中点,联结;(2)先求出DE;(3)分二种情况讨论。解析(1)取中点,联结,为的中点,,.又,.,得;(2)由已知得.以线段为直径的圆与以线段为直径的圆外切,,即.解得,即线段的长为;(3)由已知,以为顶点的三角形与相似,又易证得.由此可知,另一对对应角相等有两种情况:①;②.①当时,,..,易得.得;②当时,,..又,.,即,得.解得,(舍去).即线段的长为2.综上所述,所求线段的长为8或2.3\n例2(山东青岛)已知:如图(1),在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;AQCPB(4)如图(2),连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.AQCPB图(1)图(2)【思路点拨】(1)设BP为t,则AQ=2t,证△APQ∽△ABC;(2)过点P作PH⊥AC于H.(3)构建方程模型,求t;(4)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP′C是菱形,那么构建方程模型后,能找到对应t的值图①BAQPCH解析(1)在Rt△ABC中,,由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC,∴,∴,∴.(2)过点P作PH⊥AC于H.∵△APH∽△ABC,∴,∴,∴,3\n∴. (3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ.∴,解得:.若PQ把△ABC面积平分,则,即-+3t=3.∵t=1代入上面方程不成立,∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.P′BAQPC图②MN(4)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP′C是菱形,那么PQ=PC.∵PM⊥AC于M,∴QM=CM.∵PN⊥BC于N,易知△PBN∽△ABC.∴,∴,∴,∴,∴,解得:.∴当时,四边形PQP′C是菱形.此时, ,在Rt△PMC中,,∴菱形PQP′C边长为.3
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。