资料简介
12.2三角形全等的判定第3课时角边角和角角边一、新课导入1.导入课题:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来形状大小相同的三角形硬纸板吗?下面我带着这个问题学习——三角形的又一个重要的判定方法.2.学习目标:(1)能述出“角边角”定理.(2)能运用“角边角”定理解决简单的推理证明问题.3.学习重、难点:重点:“角边角”定理及其应用.难点:灵活运用三角形全等条件证明三角形全等.二、分层学习1.自学指导:(1)自学内容:探究有两个角和它们的夹边对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:参考探究提纲进行实验操作,并进行观察、思考,得出你的结论.有困难的学生可以合作学习.(4)探究提纲:①,动手操作:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么结论?②将你发现的结论写下来:两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).③将上述结论用几何语言表示为:在△ABC和△A′B′C′中∵∠A=∠A′,AB=A′B′,∠B=∠B′,∴△ABC≌△A′B′C′(ASA)2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:观察学生动手情况,特别是结论的归纳及表述是否正确、简洁.②差异指导:对学生学习中存在的问题予以分类指导.(2)生助生:针对个别学生学习中存在的疑点进行互助交流.4.强化:“ASA”的文字表述及符号表述.1.自学指导:(1)学习内容:教材第40页例3到教材第41页“练习”前面的内容.(2)自学时间:10分钟.(3)自学方法:结合图形,对照条件寻找符合“ASA”的对应元素.(4)自学参考提纲:①,例3中,要证明AD=AE,可通过证明哪两个三角形全等得到?根据条件采用哪种判定方法?△ACD≌△ABE(ASA).证明中对应相等的元素排列次序有讲究吗?公共角(公共边)是∠A.②认真阅读例4a.已知条件中的两个角是边的夹角吗?不是b.仔细阅读例题的证明过程,该题的证明是用我们学过哪个定理来证明的?三角形内角和定理c.该例题得出了一个什么结论?结论:两角分别相等且其中一组等角的对边相等的两个三角形全等(简写为:角角边或AAS)将上述结论用几何语言表示为:在△ABC和△DEF中∵∠A=∠D,∠B=∠E,BC=EF∴△ABC≌△DEF(AAS)③小组合作完成教材第41页上面的思考.a.小组长给出任意三个角的度数,小组内的所有成员动手画一画,然后比一比,画出的三角形全等吗?b.通过“思考”的学习,我们明白了什么道理?结论:三个角分别相等的两个三角形不一定全等.c.归纳交流:判定两个三角形全等的方法有哪些?2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:,①明了学情:对于例4的证明,学生对条件的转换容易混淆,教材第41页的思考在小组合作下学习,部分学生也会存在一定的困难.②差异指导:对学生存在的问题予以启发指导.(2)生助生:对教材第41页的“思考”由小组共同合作交流相互帮助完成.4.强化:(1)有两个角及一边对应相等的两个三角形全等,其对应关系有两种情况:“ASA”、“AAS”(2)练习:①如图,EA⊥AB,DB⊥AB,∠ACE=∠BDC,AE=BC,试判断CE与CD的关系.解:∵EA⊥AB,DB⊥AB,∴∠A=∠B=90°,在△ACE和△BDC中,∠ACE=∠BDC,∠A=∠B,AE=BC,∴△ACE≌△BDC(AAS).∴CE=CD.②判断:a.有两条边和一个角对应相等的两个三角形全等.(×)b.有两个角和一条边对应相等的两个三角形全等.(√)三、评价1.学生的自我评价:学生相互交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价(课堂评价检测).,3.教师的自我评价(教学反思):本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究,合作学习的能力.同时,注重让学生用自己的语言归纳和表达发现的规律,指引学生对知识与方法进行回顾总结,形成良好的反思习惯,获取优秀的学习方法.一、基础巩固(每题10分,共50分)1.在△ABC和△A′B′C′中,从下列各组条件中,选取的三个条件不能保证△ABC≌△A′B′C′的是(B)①AB=A′B′②BC=B′C′③AC=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′A.①②③B.①②④C.③④⑤D.具备②③⑥2.如果两个三角形中两条边和其中一边所对的角相等,那么这两个三角形(C)A.全等B.不全等C.不一定全等D.以上答案均不对3.如图,已知AB=DC,AD=BC,E、F是DB上的两点且BF=DE.若∠AEB=120°,∠ADB=30°,则∠BCF=(D)A.150°B.40°C.80°D.90°,4.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=35度.5.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有6对.二、综合运用(每题15分,共30分)6.已知:如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为BC=EF.(2)若以“ASA”为依据,还须添加的一个条件为∠A=∠D.(3)若以“AAS”为依据,还须添加的一个条件为∠ACB=∠F.7.如图,AB∥CD,AD∥BC,那么AD=BC,AB=DC,你能说明其中的道理吗?(可添加辅助线)解:连接AC.∵AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,又AC=CA,∴△BAC≌△DCA(ASA).∴AD=BC,AB=DC.三、拓展延伸(20分)8.如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.,证明:∵BF=DE,∴BF-EF=DE-EF,即BE=DF.在△ABE和△CDF中,AB=CD,AE=CF,BE=DF,∴△ABE≌△CDF.∴∠B=∠D.∴AB∥CD.∴∠BAO=∠DCO.在△ABO和△CDO中,∠B=∠D,AB=CD,∠BAO=∠DCO,∴△ABO≌△CDO,∴BO=DO,AO=CO,即AC与BD互相平分.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。