资料简介
八年级数学上册导学案:12.2三角形全等的判定(3)12.2三角形全等的判定(3)学习目标:1、经历三角形全等的判定的全过程,体会利用操作归纳获得数学结论的过程。2、掌握三角形全等的“角边角”条件学习重点:三角形全等的条件——角边角。学习难点:寻求三角形全等的条件课前预习阅读课本,解决下列问题:三角形全等的判定方法:ASAAAS【自能学习】一、做一做1、已知两个角(30°,45°)和一条线段(3cm),以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.思考:1).把你画的三角形与其他同学画的进行比较,所有的三角形都全等吗? 2).换两个角和一条线段,用同样的方法试试看,是否有同样的结论?结论:两角及夹边相等,两个三角形一定全等。2、由此又得到一个全等三角形的判定方法(ASA): 三角形全等的判定方法:ASAAAS(1)ASA内容;___和它们的___对应相等的两个三角形全等。(2)简写:“___”或“___”(3)书写格式在△ABC和△DEF中∠A=∠DAB=__∠B=__∴△ABC≌___(___)课内探究如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?,你的结论是______________________________,你能证明吗?证明:【拓展延伸】如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠1=∠C,求证AC=AB+CE当堂检测1如下图,D在AB上,E在AC上,AB=AC,∠B=∠C、求证:AD=AE.,2、已知:点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:BD=CE课后反思课后训练基础知识1、下列说法中,正确的是( )A、所有的等腰三角形全等 B、有两边对应相等的两个等腰三角形全等C、有一边对应相等的两个等腰三角形全等 D、腰和顶角对应相等的两个等腰三角形全等2、在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形( )A、一定不全等 B、一定全等 C、不一定全等 D、以上都不对3、如图,和中,下列能判定≌的是()A、,,B、,,C、,,D、,,4、如图为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A、带①去B、带②去C、带③去D、带①和②去4、在△ABC和△DEF中,条件(1)AB=DE,(2)BC=EF,(3)AC=DF,(4)∠A=∠D,(5),∠B=∠E,(6)∠C=∠F,则下列各组条件中,不能保证△ABC≌△DEF的是( )A、(1)(2)(3)B、(1)(2)(5)C、(1)(3)(5)D、(2)(5)(6)5、如图,,,则图中全等三角形有()A、1对B、2对C、3对D、4对6、如图,于,于,平分,则图中全等三角形有()A、1对B、2对C、3对D、4对7、如图,已知,,求证:8.满足下列哪种条件时,就能判定△ABC≌△DEF()A.AB=DE,BC=EF,∠A=∠E;B.AB=DE,BC=EF,∠C=∠FC.∠A=∠E,AB=EF,∠B=∠D;D.∠A=∠D,AB=DE,∠B=∠E9.如图所示,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是:()A.∠B=∠EB.ED=BCC.AB=EFD.AF=CD10如6题图,在△ABC和△DEF中,AF=DC,∠A=∠D,当_____________时,可根据“ASA”证明△ABC≌△DEFAFCD12EB
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。