资料简介
第2课时三角形三边的关系教学目标:1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。3.培养学生积极的学习态度和乐于探究的数学情感。教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。教学难点:运用三角形三边的关系解决实际问题。教学准备:课件教学过程:一、谈话引入1.举例:生活中哪些物体的面是三角形的?2.复习三角形的各部分名称。提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……3.导入新课。三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)二、交流共享1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?2.操作交流。(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。教师巡视,了解学生的操作情况。(2)小组交流。布置学生将各自的操作情况在四人小组内进行交流。(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?学生回答预设:①选择8cm、5cm、4cm三根小棒,能围成三角形。
②选择5cm、4cm、2cm三根小棒,能围成三角形。③选择8cm、4cm、2cm三根小棒,不能围成三角形。④选择8cm、5cm、2cm三根小棒,不能围成三角形。追问:第③种情况和第④种情况为什么不能围成三角形?引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。教师小结:因为4cm+2cm<8cm,5cm+2cm<8cm,所以不能围成三角形。3.探索规律。师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?(1)布置探索任务。从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?(2)学生独立探索。(3)交流汇报。第①种情况:4+5>8、4+8>5、5+8>4;第②种情况:4+2>5、4+5>2、5+2>4。小结:任意两根小棒长度的和一定大于第三根小棒。4.验证规律。提问:三角形任意两边长度的和一定大于第三边吗?(1)画一画:用三角尺画一个三角形。(2)量一量:量出三角形的各边长度。(单位:毫米)(3)算一算:算出任意两边之和与第三边长度的关系。(4)总结规律。提问:通过验证,你发现三角形三边的长度有哪些关系?师生共同总结得出:三角形任意两边长度的和大于第三边。追问:对于“任意两边”这四个字,你是怎么理解的?5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。三、反馈完善1.完成教材第78页“练一练”第1题。
先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。2.完成教材第78页“练一练”第2题。这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差<第三边<两边之和”。四、反思总结通过本课的学习,你有什么收获?还有哪些疑问?
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。